دانلود تحقیق،مقاله،جزوات دانشگاهی،خلاصه کتاب و طرح لایه بازفتوشاپ

مرکز دانلود تحقیق رايگان دانش آموزان و فروش آنلاين انواع مقالات، پروژه های دانشجويی،جزوات دانشگاهی، خلاصه کتاب، كارورزی و کارآموزی، طرح لایه باز کارت ویزیت، تراکت مشاغل و...******* توجه مهم: به منظور افزایش سطح کیفیت سایت و رضایت شما بازدیدکنندگان گرامی لطفا درصورت رویت هر یک از موارد زیر سریعا به پشتیبانی سایت اطلاع دهید. ۱) در صورت مشاهده هر گونه مغایرت در محتویات فایل با عنوان موضوع جهت اصلاح فایل مورد نقص ۲) در صورت مشاهده هر گونه مغایرت با موازین جمهوری اسلامی ایران به منظور اصلاح یا حذف لینک مربوطه ۳) اگر شما نویسنده یا پدیدآورنده اثر هستید در صورت عدم رضایت از نمایش اثر خود به منظور حذف اثر از سایت *****با تشکر از همراهی شما***** دانشجو برای دانشجو

نمونه سوالات کارشناسی ارشد دانشگاه پیام نور (سوالات تخصصی)

نمونه سوالات کارشناسی دانشگاه پیام نور (سوالات تخصصی)

نمونه سوالات دانشگاه پيام نور (سوالات عمومی)

کارآموزی و کارورزی

مقالات رشته حسابداری و اقتصاد

مقالات علوم اجتماعی و جامعه شناسی

مقالات روانشناسی و علوم تربیتی

مقالات فقهی و حقوق

مقالات تاریخ- جغرافی

مقالات دینی و مذهبی

مقالات علوم سیاسی

مقالات مدیریت و سازمان

مقالات پزشکی - مامایی- میکروبیولوژی

مقالات صنعت- معماری- کشاورزی-برق

مقالات ریاضی- فیزیک- شیمی

مقالات کامپیوتر و شبکه

مقالات ادبیات- هنر - گرافیک

اقدام پژوهی و گزارش تخصصی معلمان

پاورپوئینت و بروشورر آماده

طرح توجیهی کارآفرینی

آمار سایت

نظرسنجی سایت

چه قسمتی از سايت برای شما مفيد بود؟***(آيا می دانيد با اولين خريد به شما كد تخفيف 30 درصدی جهت خریدهای بعدی تعلق ميگيرد؟)***

آمار بازدید

  • بازدید امروز : 7249
  • بازدید دیروز : 9659
  • بازدید کل : 3345162

انرژی های تجدیدپذر


فهرست مطالب

انرژی های نو ............................................................4

انرژی خورشیدی .........................................................6

انرژی باد .................................................................14

 

 

انرژی های نو

 

انرژی نو یا انرژی جایگزین به آن دسته از انرژی‌ها گفته می‌شود که برای تولیدشان از منابع بدون کربن استفاده می‌گردد؛ مانند انرژی خورشیدی، انرژی بادی، انرژی دریایی، زمین گرمایی، نیروگاه‌های آبی و زیست توده.

این نوع انرژی‌ها معایب سوخت‌های فسیلی مانند افزایش غلظت دی‌اکسیدکربن و در نتیجه افزایش دمای کره زمین و تغییرات آب و هوایی و آلودگی زیست‌محیطی را ندارد علاوه بر این منابع تولید آن‌ها تمام ناشدنی و نامحدود است.

ماهیت آنچه که یک منبع انرژی را در دسته انرژی‌های جایگزین قرار می‌دهد در طول زمان تغییر کرده‌است. امروزه به علت تنوع منابع انرژی و اهداف مختلفی که حامیان هریک از این انرژی‌ها دنبال می‌کنند، تعریف بسیاری از انواع انرژی به عنوان انرژی جایگزین محل مجادله است.

بشر از ديرباز با بكارگيري انرژيهاي فراوان و در دسترس طبيعت، در پي گشودن دريچه اي تازه به روي خويش بود تا از اين رهگذار، بتواند افزون بر آسانتر كردن كارها، فعاليتهاي خود را با كمترين هزينه و بالاترين سرعت به انجام رساند و گامي براي آسايش بيشتر بردارد. نخستين انرژي بكاررفته توسط بشر، انرژي خورشيد بود. انسان از نور و گرماي آفتاب بهرههاي فراوان ميبرد؛ تا آنجا كه اين انرژي جزيي جداييناپذير از فرآيند برخي صنايع گشت و حتي امروزه نيز جايگاه خود را از دست نداده است. مردماني كه به جريانهاي آزاد آب دسترسي داشتند يا در سرزمينهاي بادخيز ميزيستند، از اين انرژي حركتي استفاده ميكردند و با تبديل و مهار آن، بر توان خويش جهت انجام كارهاي بزرگتر و دشوارتر، ميافزودند. انرژي ديگري كه در گذشته با آن آشنا بوده، از آن ياري مي جستند، انرژي گرمايي زمين بود. انسانهاي ساكن نواحي آتشفشاني، آگاهانه يا ناخودآگاه، با بهره بردن از ويژگيهاي درماني-گرمايي چشمههاي آبگرم، بنوعي اين انرژي را بكار ميبستند.

با افزايش جمعيت و گسترش و پراكندگي آن و نيز همگام با نياز روزافزون به انرژيهاي جديد و كارآتر با بازده بيشتر، كمكم بشر سوختهاي فسيلي را كشف كرد و آن را منبعي پايان ناپذير يافت كه نويدبخش آيندهاي روشن بود.

وابستگي انسان به سوختهاي فسيلي، روزبروز بيشتر ميشد و با پيشرفت علم و فناوري و ساخت ماشينها و ابزارهاي گوناگون و بويژه با رخ دادن انقلاب صنعتي، بكارگيري سوختهاي فسيلي به اوج خود رسيد؛ اما در كنار اين پيشرفتها، رفتهرفته بشر دريافت كه گذشته از محدود بودن انرژي فسيلي، بهرهگيري از اين انرژي نيز چندان بدون هزينه نخواهد بود و ديري نپاييد كه پيامدهاي ناشي از سوزاندن سوختهاي فسيلي، خود به چالشي تازه براي جوامع انجاميد. براي نمونه مصرف كنوني نفت، حدود ده ميليارد تن در سال است كه بيش از اين نيز خواهد شد و با اين كه ذغالسنگ از ابتداييترين سوختهاي فسيلي است، امروز هنوز 40% انرژي الكتريكي جهان و 56% برق آمريكا، از سوختن ذغالسنگ بدست ميآيد و سالان چندين ميليون تن گاز 2SO2 ،NO و CO حاصل از سوختن ذغال،؛ در جو زمين رها ميشود. امروزه عوامل بسياري از جمله گسترش فزايندهي نياز به انرژي، محدوديت منابع فسيلي، فاجعهي آلودگي زيست محيطي ناشي از سوخت مواد فسيلي، گرم شدن هوا و اثر گلخانهاي، لزوم تعادل پخش گازهاي آلايندهو بسياري از ديگر عوامل، سبب رويكرد دوبارهي علم به انرژيهاي تجديدپذير طبيعي شده؛ با اين تفاوت كه پيشرفتعلم و فناوري، فصلي تازه در بكارگيري و تبديل و مهار اين انرژيها گشوده است. در بكارگيري انرژيهاي تجديدپذير، دو رويكرد عمده وجود دارد؛ روش نخست، روش تركيبي است كه در آن همه ي انواع اين انرژيها به برق تبديل مي شود. در روش دوم با تجهيزات ويژه، اين انرژيها را بي واسطه در گرمايش، سرمايش و محورهاي چرخان مكانيكي بكار ميبرند (روش مجموعه هاي مكمل). روش دوم بدليل حذف تبديلهاي غيرلازم، نسبت به روش نخست برتري دارد و بازدهي آن نيز بسيار بيشتر است؛ اما بخاطر فراگيرتر بودن فناوري، گرايش بيشتري به روش تركيبي نشان داده شده است.

 

 

 

 

 

 

 

انرژی خورشیدی

 

تاریخچه

شناخت انرژی خورشیدی و استفاده از آن برای منظورهای مختلف به زمان پیشاتاریخ بازمی‌گردد. شاید به دوران سفالگری، در آن هنگام روحانیون معابد به کمک جام‌های بزرگ طلائی صیقل داده شده و پرتو خورشید، آتشدان‌های محراب‌ها را روشن می‌کردند. یکی از فراعنه مصر باستان معبدی ساخته بود که با طلوع خورشید درب آن باز و با غروب خورشید درب بسته می‌شد.

ولی مهم‌ترین روایتی که درباره استفاده از خورشید بیان شده داستان ارشمیدس دانشمند و مخترع بزرگ یونان باستان است که ناوگان روم را با استفاده از انرژی حرارتی خورشید به آتش کشید. گفته می‌شود که ارشمیدس با نصب تعداد زیادی آئینه‌های کوچک مربعی شکل در کنار یکدیگر که روی یک پایه متحرک قرار داشته، پرتو خورشید را از راه دور روی کشتی‌های رومیان متمرکز ساخته و به این ترتیب آنها را به آتش کشیده‌است. در تاریخ ایران باستان نیز معماری سنتی ایرانیان باستان نشان دهنده توجه خاص آنان در استفاده صحیح و مؤثر از انرژی خورشید در زمان‌های قدیم بوده‌است.

با وجود آنکه انرژی خورشید و مزایای آن در قرون گذشته به خوبی شناخته شده بود ولی بالا بودن هزینه اولیه چنین سیستم‌هایی از یک طرف و عرضه نفت خام و گاز طبیعی ارزان از طرف دیگر سد راه پیشرفت این سیستم‌ها شده بود. با افزایش قیمت نفت در سال ۱۹۷۳ کشورهای صنعتی مجبور شدند به مسئله تولید انرژی از راه‌های دیگر (غیر از استفاده سوخت‌های فسیلی) توجه جدی‌تری نمایند.

 

 

 

 

پتانسیل خورشیدی

انرژی تولید شده توسط خورشید

خورشید از گازهایی نظیر هیدروژن (۷۳٫۴۶درصد) هلیوم (۲۴٫۸۵ درصد) و عناصر دیگری تشکیل شده‌است که از جمله آن‌ها می‌توان به اکسیژن، کربن، نئون و نیتروژن اشاره نمود.

انرژی ستاره خورشید یکی از منابع عمده انرژی در منظومه شمسی است. طبق آخرین برآوردهای رسمی اعلام شده عمر این منبع انرژی بیش از ۱۴ میلیارد سال است. در هر ثانیه ۲/۴ میلیون تن از جرم خورشید به انرژی تبدیل می‌شود. با توجه به جرم خورشید که حدود ۳۳۳ هزار برابر جرم زمین است. این کره نورانی را می‌توان به‌عنوان منبع عظیم انرژی تا ۵ میلیارد سال آینده به حساب آورد.

میزان دما در مرکز خورشید حدود 20 میلیون درجه سلسیوس است که از سطح آن با حرارتی نزدیک به ۵۶۰۰ درجه و به صورت امواج الکترومغناطیس در فضا منتشر می‌شود.

زمین در فاصله ۱۵۰ میلیون کیلومتری خورشید واقع است و ۸ دقیقه و ۱۸ ثانیه طول می‌کشد تا نور خورشید به زمین برسد؛ بنابراین سهم زمین در دریافت انرژی از خورشید میزان کمی از کل انرژی تابشی آن است. منشأ تمام اشکال مختلف انرژی‌های شناخته شده تاکنون شامل (سوخت‌های فسیلی ذخیره شده درزمین، انرژی‌های بادی، آبشارها، امواج دریاها و…) موجود در کره زمین از خورشید است.

انرژی خورشیدی

انرژی خورشیدی منحصربه‌فردترین منبع انرژی تجدیدپذیر در جهان است و منبع اصلی تمامی انرژی‌های موجود در زمین است. انرژی خورشیدی به صورت مستقیم و غیرمستقیم می‌تواند به اشکال دیگر انرژی تبدیل گردد.

انرژی خورشید همانند سایر انرژی‌ها بطور مستقیم یا غیر مستقیم می‌تواند به دیگر اشکال انرژی همانند گرما و الکتریسیته و… تبدیل شود. اما موانعی شامل (ضعف علمی و تکنیکی در تبدیل بعلت کمبود دانش و تجربه میدانی - متغیر و متناوب بودن مقدار انرژی به دلیل تغییرات جوی و فصول سال و جهت تابش - محدوده توزیع بسیار وسیع) موجب شده تا استفاده کمی از این انرژی صورت گیرد.

استفاده ازمنابع عظیم انرژی خورشید برای تولید انرژی الکتریسته، استفاده دینامیکی، ایجاد گرمایش محوطه‌ها و ساختمان‌ها، خشک کردن تولیدات کشاورزی و تغییرات شیمیایی و… اخیراً شروع گردیده‌است.

انرژی حرارتی خورشیدی

آبگرمکن‌های خورشیدی و حمام خورشیدی

از انرژی خورشیدی می‌توان برای تولید آب گرم تهیه آب گرم بهداشتی در منازل و اماکن عمومی به خصوص در مکان‌هایی که مشکل سوخت رسانی وجود دارد استفاده کرد. چنانچه ظرفیت این سیستم‌ها افزایش یابد می‌توان از آنها در حمام‌های خورشیدی نیز استفاده نمود.

گرمایش و سرمایش ساختمان و تهویه مطبوع خورشیدی

اولین خانه خورشیدی در سال ۱۹۳۹ساخته شد که در آن از مخزن گرمای فصلی برای بکارگیری گرمای آن در طول سال استفاده شده‌است. گرمایش و سرمایش ساختمان‌ها با استفاده از انرژی خورشید، ایده تازه‌ای بود که در دهه ۱۹۳۰ مطرح شد و در کمتر از یک دهه به پیشرفتهای قابل توجهی رسید. با افزودن سیستمی معروف به سیستم تبرید جذبی به سیستم‌های خورشیدی می‌توان علاوه بر آب گرم مصرفی و گرمایش از این سیستم‌ها در فصول گرما برای سرمایش ساختمان نیز استفاده کرد.

آب شیرین کن خورشیدی

هنگامی که حرارت دریافت شده از خورشید با دمای کم‌روی آب شور اثر کند تنها آب تبخیر شده و املاح باقی می‌ماند.

سپس با استفاده از روش‌های مختلف می‌توان آب تبخیر شده را تنظیم کرده و به این ترتیب آب شیرین تهیه کرد. با این روش می‌توان آب بهداشتی مورد نیاز در نقاطی که دسترسی به آب شیرین ندارند مانند جزایر را تأمین کرد.

آب‌شیرین‌کن خورشیدی در دو اندازه خانگی و صنعتی ساخته می‌شوند. در نوع صنعتی با حجم بالا می‌توان برای استفاده شهرها آب شیرین تولید کرد.

 

 

خشک کن خورشیدی

خشک کردن مواد غذایی برای نگهداری آنها از زمان‌های بسیار قدیم مرسوم بوده و انسان‌های نخستین خشک کردن را یک هنر می‌دانستند.

خشک کردن عبارت است از گرفتن قسمتی از آب موجود در مواد غذایی و سایر محصولات که باعث افزایش عمر انباری محصول و جلوگیری از رشد باکتری‌ها است. در خشک کن‌های خورشیدی بطور مستقیم یا غیر مستقیم از انرژی خورشیدی جهت خشک نمودن مواد استفاده می‌شود و هوا نیز به صورت طبیعی یا اجباری جریان یافته و باعث تسریع عمل خشک شدن محصول می‌گردد. خشک‌کن‌های خورشیدی در اندازه‌ها و طرحهای مختلف و برای محصولات و مصارف گوناگون طراحی و ساخته می‌شوند.

اجاق‌های خورشیدی

دستگاه‌های خوراک‌پز خورشیدی اولین بار بوسیله شخصی بنام نیکلاس ساخته شدند. اجاق او شامل یک جعبه عایق‌بندی شده با صفحه سیاه رنگی بود که قطعات شیشه‌ای درپوش آن را تشکیل می‌داد. پرتو خورشید با عبور از میان این شیشه‌ها وارد جعبه شده و بوسیله سطح سیاه جذب می‌شد سپس درجه حرارت داخل جعبه را به ۸۸ درجه افزایش می‌داد. اصول کار اجاق خورشیدی جمع‌آوری پرتوهای مستقیم خورشید در یک نقطه کانونی و افزایش دما در آن نقطه است. امروزه طرح‌های متنوعی از این سیستم‌ها وجود دارد که این طرح‌ها در مکان‌های مختلفی از جمله آفریقای جنوبی آزمایش شده و به نتایج خوبی نیز رسیده‌اند. استفاده از این اجاق‌ها به ویژه در مناطق شرقی ایران که با مشکل کمبود سوخت مواجه می‌باشند بسیار مفید خواهد بود.

کوره خورشیدی

در سده هجدهم میلادی، نوتورا اولین کوره خورشیدی را در فرانسه ساخت و بوسیله آن یک تل چوبی را در فاصله ۶۰ متری آتش زد.

بسمر پدر فولاد جهان نیز حرارت مورد نیاز کوره خود را از انرژی خورشیدی تأمین می‌کرد. متداولترین سیستم یک کوره خورشیدی متشکل از دو آینه یکی تخت و دیگری کروی است. نور خورشید به آینه تخت رسیده و توسط این آینه به آینه خمیده بازتابیده می‌شود. طبق قوانین اپتیک هر گاه دسته پرتوی موازی محور آینه با آن برخورد نماید در محل کانون متمرکز می‌شوند به این ترتیب انرژی حرارتی گسترده خورشید در یک نقطه جمع می‌شود که این نقطه به دماهای بالایی می‌رسد. امروزه پروژه‌های متعددی در زمینه کوره‌های خورشید در سراسر جهان در حال طراحی و اجراء است.

کوره خورشیدی وسیله‌ای است که از تعداد بسیار زیادی آینه تخت که به صورت الکترونیکی کنترل می‌شود برای متمرکز ساختن نور خورشید در یک ناحیه کوچک جهت تولید دماهای بسیار بالا ساخته شده است. از این گرما برای تولید آب گرم و بخار آب گرم برای به راه انداختن توربین یک نیروگاه برق استفاده می‌شود.

خانه‌های خورشیدی

ایرانیان باستان از انرژی خورشیدی برای کاهش مصرف چوب در گرم کردن خانه‌های خود در زمستان استفاده می‌کردند. آنان ساختمان‌ها را به ترتیبی بنا می‌کردند که در زمستان نور خورشید به داخل اتاق‌های نشیمن می‌تابید ولی در روزهای گرم تابستان فضای اتاق در سایه قرار داشت. در اغلب فرهنگ‌های دیگر دنیا نیز می‌توان نمونه‌هایی از این قبیل طرحها را مشاهده نمود. در سال‌های بین دو جنگ جهانی در اروپا و ایالات متحده آمریکا طرح‌های گوناگونی در زمینه خانه‌های خورشیدی مطرح و آزمایش شد. از آن زمان به بعد تحول خاصی در این زمینه صورت نگرفت. حدود چند سالی است که معماران بطور جدی ساخت خانه‌های خورشیدی را آغاز کرده‌اند و به دنبال تحول و پیشرفت این تکنولوژی به نتایج مفیدی نیز دست یافته‌اند مثلاً در ایالات متحده در سال ۱۹۸۰ به تنهایی حدود ۱۰ تا ۲۰ هزار خانه خورشیدی ساخته شده‌است. در این‌گونه خانه‌ها سعی می‌شود از انرژی خورشید برای روشنایی – تهیه آب گرم بهداشتی – سرمایش و گرمایش ساختمان استفاده شود و با بکار بردن مصالح ساختمانی مفید از اتلاف گرما و انرژی جلوگیری شود.

انرژی الکتریکی خورشیدی

می‌توان انرژی خورشیدی را به الکتریسیته تبدیل کرد برای این کار دو روش اصلی وجود دارد. یک روش استفاده از حرارت خورشیدی و روش دیگر استفاده از صفحات خورشیدی فتوولتاییک است.

 

 

 

نیروگاه حرارتی-خورشیدی

تأسیساتی که با استفاده از آنها انرژی جذب شده حرارتی خورشید به الکتریسیته تبدیل می‌شود، نیروگاه حرارتی خورشیدی نامیده می‌شود. در نیروگاه‌های حرارتی خورشیدی وظیفه اصلی بخش‌های خورشیدی تولید بخار مورد نیاز برای تغذیه توربین‌ها است یا به عبارت دیگر می‌توان گفت که این نوع نیروگاه‌ها شامل دو قسمت هستند:

  • سیستم خورشیدی که پرتوهای خورشید را جذب کرده و با استفاده از حرارت جذب شده تولید بخار می‌نماید.
  • سیستمی موسوم به سیستم سنتی که همانند دیگر نیروگاه‌های حرارتی بخار تولید شده را توسط توربین و ژنراتور به الکتریسیته تبدیل می‌کند.

این تأسیسات بر اساس انواع متمرکز کننده‌های موجود و بر حسب اشکال هندسی متمرکز کننده‌ها به چند دسته تقسیم می‌شوند:

  • نیروگاه‌هایی که گیرنده آنها آینه‌های سهموی ناودانی هستند.
  • نیروگاه‌هایی که گیرنده آنها در یک برج قرار دارد و نور خورشید توسط آینه‌های بزرگی به نام هلیوستات به آن منعکس می‌شود. (دریافت کننده مرکزی)
  • نیروگاه‌هایی که گیرنده آنها بشقابی سهموی (دیش) است.
  • دودکش خورشیدی

تولید برق خورشیدی فتو ولتاییک

فتو ولتاییک یا به اختصار، یکی از انواع سامانه‌های تولید الکتریسیته از نور خورشید است. در این روش با بکارگیری سلول خورشیدی، تولید مستقیم الکتریسیته از تابش خورشید امکان‌پذیر می‌شود. الکتریسیته یا می‌تواند به‌طور مستقیم از انرژی خورشید تولید شود و ابزارهای فتوولتایک استفاده کند یا به‌طور غیر مستقیم از ژنراتورهای بخار ذخایر حرارتی خورشیدی را برای گرما بخشیدن به یک سیال کاربردی مورد استفاده قرار می‌دهند.

به پدیده ای که در اثر تابش نور بدون استفاه از مکانیسم‌های محرک، الکتریسیته تولید کند، پدیده فتوولتائیک و به هر سیستمی که از این پدیده‌ها استفاده کند سیستم فتوولتائیک گویند. سیستم‌های فتوولتائیک یکی از پر مصرف‌ترین کاربردهای انرژی‌های نو می‌باشند. از سری و موازی کردن سلول‌های آفتابی می‌توان به جریان و ولتاژ قابل قبولی دست یافت. در نتیجه به یک مجموعه از سلول‌های سری و موازی شده پنل (Panel) فتوولتائیک می‌گویند. امروزه اینگونه سلولها عموماً از ماده سیلیسیم تهیه می‌شود و سیلیسیم مورد نیاز از شن و ماسه تهیه می‌شود. سیستم‌های فتوولتائیک را می‌توان بطور کلی به دو بخش اصلی تقسیم نمود:

  • روش غیرفعال: شامل اجزای زیر است:

دیوار حائل سنگین (ظرفیت حرارتی بالا)

دیوار ترومب

بالکن‌های خورشیدی یا فضای خورشیدی

حیاط مرکزی

  • پنل خورشیدی: این بخش در واقع مبدل انرژی تابشی خورشید به انرژی الکتریکی بدون واسطه مکانیکی می‌باشد که کلیه مشخصات سیستم را کنترل کرده و توان ورودی پنلها را طبق طراحی انجام شده و نیاز مصرف‌کننده به بارمصرفی یا باتری، تزریق و کنترل می‌کند.

راندمان کدام یک؟ مقایسه فتوولتاییک و حرارتی

هرچند امروزه شاهد مونتاژ سلول‌های خورشیدی در دست چندم‌ترین قدرت‌های اقتصادی هستیم، ولی فارغ از تبلیغات کارتل‌های بزرگ انرژی، نتایج پژوهش‌های جدید کشورهای صنعتی و نمونه‌های میدانی حاکیست، راندمان نیروگاه حرارتی با خورشید بر جریان ضعیف سلول‌های خورشیدی برتری دارد. این شکاف رو به گسترش به دلیل اتلاف انرژی حتی در بهترین سلول‌ها و از طرفی نیز بهینه‌سازی روزافزون عدسی‌های فرنل و آینه‌های اره ای برای دریافت صددرصدی این انرژی به وجود آمده.

(می توان گفت ثبت گرم‌ترین نقطه کره زمین در ایران و هزینه ارزی گزاف نگهداری یا واردات سلول‌های خورشیدی، درمقایسه با ساختار ارزان و ساده آینه یا خصوصاً عدسی مزید بر این‌ها خواهد شد)

انرژی های خورشیدی در ایران

ایران با داشتن حدود ۳۰۰ روز آفتابی در سال جزو بهترین کشورهای دنیا در زمینه پتانسیل انرژی خورشیدی در جهان است. با توجه به موقعیت جغرافیای ایران و پراکندگی روستای در کشور، استفاده از انرژی خورشیدی یکی از مهمترین عواملی است که باید مورد توجه قرار گیرد. استفاده از انرژی خورشیدی یکی از بهترین راه‌های برق‌رسانی و تولید انرژی در مقایسه با دیگر مدل‌های انتقال انرژی به روستاها و نقاط دور افتاده در کشور از نظر هزینه، حمل‌ونقل، نگهداری و عوامل مشابه است.

 

با توجه به استانداردهای بین‌المللی اگر میانگین انرژی تابشی خورشید در روز بالاتر از ۳٫۵ کیلووات ساعت در مترمربع (۳۵۰۰ وات/ساعت) باشد استفاده از مدلهای انرژی خورشیدی نظیر کلکتورهای خورشیدی یا سیستم‌های فتوولتائیک بسیار اقتصادی و مقرون به صرفه است.

در بسیاری از قسمت‌های ایران انرژی تابشی خورشید بسیار بالاتر از این میانگین بین‌المللی است و در برخی از نقاط حتی بالاتر از ۷ تا ۸ کیلو وات ساعت بر مترمربع اندازه‌گیری شده‌است ولی بطور متوسط انرژی تابشی خورشید بر سطح سرزمین ایران حدود ۴٫۵ کیلو وات ساعت بر مترمربع است.

تاکنون با توجه به موقعیت جغرافیایی ایران تعداد زیادی آب گرمکن خورشیدی و چندین دستگاه حمام خورشیدی در نقاط مختلف کشور از جمله استان خراسان، استان سیستان و بلوچستان، استان یزد و استان کرمان نصب و راه‌اندازی شده‌است.

 

 

 

 

 

 

 

 

 

انرژی باد

توان بادی: تبدیل انرژی باد به نوعی مفید از انرژی مانند انرژی الکتریکی (با استفاده از توربین‌های بادی)، انرژی مکانیکی (مثلاً در آسیاب‌های بادی یا پمپ‌های بادی) یا پیش‌رانش قایق‌ها و کشتی‌ها (مثلاً در قایق‌های بادبانی) است. در آسیاب‌های بادی از انرژی باد مستقیماً برای خرد کردن دانه‌ها یا پمپ کردن آب استفاده می‌شود.

در پایان سال ۲۰۱۰، میزان ظرفیت نامی تولید برق بادی در سراسر جهان برابر ۱۹۷ گیگاوات بود.[۱] امروزه توان بادی در دنیا ظرفیت تولید سالانه ۴۳۰ تراوات ساعت انرژی الکتریکی را دارد که این میزان، ۲٫۵٪ مصرف برق دنیاست. در ۵ سال گذشته، رشد متوسط سالانه در توان بادی دنیا ۲۷٫۶٪ بوده و انتظار می‌رود که سهم باد در تولید انرژی الکتریکی دنیا تا سال ۲۰۱۳ به ۳٫۳۵٪ و تا سال ۲۰۱۸ به ۸٪ برسد.

انرژی بادی در مقادیر زیاد در مزارع بادی تولید و به شبکه الکتریکی متصل می‌شود. از توربین‌ها در تعداد کم معمولاً فقط برای تأمین برق در مناطق دور افتاده استفاده می‌شود.

باد یکی از شاخصه‌های اصلی انرژی خورشیدی و هوای متحرک است و جزء کوچکی از خورشید که از تابش خورشید که از خارج به اتمسفر می‌رسد به انرژی بادتبدیل می‌شود.

اما از جمله دلایل تمایل کشورها برای افزایش ظرفیت تولید برق بادی مزایا بسیار زیاد این روش تولید انرژی الکتریکی است چراکه انرژی بادی فراوان، تجدیدپذیر و پاک است، در همه جای دنیا وجود دارد و همچنین در مقایسه با استفاده از انرژی سوخت‌های فسیلی میزان کمتری گاز گلخانه‌ای منتشر می‌کند.

 

 

 

تاریخچه

قدیمی‌ترین روش استفاده از انرژی باد، به ایران باستان بازمی‌گردد. برای نخستین بار، ایرانیان موفق شدند با استفاده از نیروی باد، دلو یا چرخ چاه را به گردش درآورده و از چاه‌های آب خود، آب را به سطح مزارع برسانند. احتمالاً نخستین ماشین بادی توسط ایرانیان باستان ساخته شده‌است و یونانیان برای خرد کردن دانه‌ها و مصریها، رومی‌ها و چینی‌ها برای قایقرانی و آبیاری از انرژی باد استفاده کرده‌اند.

در قرن ۱۳ این فناوری توسط سربازان صلیبی به اروپا برده شد و هلندیها فعالیت زیادی در توسعه دستگاه‌های بادی داشتند، به‌طوری‌که در اواسط قرن نوزدهم در حدوود ۹ هزاز ماشین بادی به منظورهای گوناگون مورد استفاده قرار می‌گرفته‌است. در زمان انقلاب صنعتی در اروپا استفاده از ماشینهای بادی رو به کاهش گذاشت. استفاده از انرژی باد در ایالات متحده از سال ۱۸۵۴ شروع شد. از این ماشینها بیشتر برای بالا کشیدن آب از چاه‌های آب و بعدها برای تولید الکتریسیته استفاده شد. بزرگترین ماشین بادی در زمان جنگ جهانی دوم توسط آمریکائیها ساخته شد.

در شوروی سابق در سال ۱۹۳۱ ماشینی بادی با محور افقی بکار انداختند که انتظار می‌رفت ۱۰۰ کیلو وات برق را به شبکه بدهد.

انرژی باد

منشأ باد یک موضوع پیچیده‌است. از آنجاییکه زمین بطور نامساوی به وسیله نور خورشید گرم می‌شود بنابراین در قطب‌ها انرژی گرمایی کمتری نسبت به مناطق استوایی وجود دارد همچنین در خشکی‌ها تغییرات دما با سرعت بیشتری انجام می‌پذیرد و بنابراین خشکی‌ها زمین نسبت به دریاها زودتر گرم و زودتر سرد می‌شوند. این تفاوت دمای جهانی موجب به وجود آمدن یک سیستم جهانی تبادل حرارتی خواهد شد که از سطح زمین تا هوا کره، که مانند یک سقف مصنوعی عمل می‌کند، ادامه دارد. بیشتر انرژی که در حرکت باد وجود دارد را می‌توان در سطوح بالای جو پیدا کرد جایی که سرعت مداوم باد به بیش از ۱۶۰ کیلومتر در ساعت می‌رسد و سرانجام باد انرژی خود را در اثر اصطکاک با سطح زمین و جو از دست می‌دهد.

 

 

 

مزایای انرژی بادی

از آنجایی که انرژی باد در زمستان (که در این فصل بهره‌وری انرژی خورشیدی کمتر است) با توجه به وزش باد بیشتر می‌باشد و همین وزش شدید باعث می‌شود که الکتریسیته بیشتری تولید گردد، بنابراین استفاده از انرژی باد در زمستان بسیار به صرفه است.

انرژی باد آلودگی ایجاد نمی‌کند و جزوء انرژی‌های تجدید پذیر می‌باشد و هزینه این انرژی به مراتب کمتر از هزینه الکتریسیته تولید شده توسط زغال سنگ و شکافت هسته‌ای می‌باشد.

ناکار آمدیهای انرژی بادی

یکی از مسائل مهم در ناکارآمدی انرژی باد مسئله زیست‌محیطی می‌باشد، با توجه به اینکه این مولدهای برق دارای ظاهر ناخوشایند و نسبت به دیگر انرژی‌های پاک دارای سر و صدای بالای هستند زندگی حیوانات را تحت تأثیر قرار می‌دهند و ظاهر محیط زیست را خراب می‌کنند.

ضریب ظرفیت

تا زمانی که سرعت باد ثابت نباشد تولید سالیانه انرژی الکتریکی توسط نیروگاه بادی هرگز برابر حاصل ضرب توان تولیدی نامی در مجموع ساعت کار آن در یک سال نخواهد شد. نسبت میزان توان حقیقی تولید شده توسط نیروگاه و ماکزیمم ظرفیت تولیدی نیروگاه را ضریب ظرفیت می‌نامند. یک نیروگاه بادی نصب شده در یک محل مناسب در ساحل ضریب ظرفیتی سالیانه‌ای در حدود ۳۵٪ دارد.

برعکس نیروگاه‌های سوختی ضریب ظرفیت در یک نیروگاه بادی به شدت به خصوصیات ذاتی باد وابسته‌است. ضریب ظرفیت در انواع دیگر نیروگاه‌ها معمولاً به بهای سوخت و زمان مورد نیاز برای انجام عملیات تعمیر بستگی دارد. از آنجایی که نیروگاه‌های هسته‌ای دارایهزینه سوخت نسبتاً پایینی هستند بنابراین محدودیت‌های مربوط به تأمین سوخت این نیروگاه‌ها نسبتاً پایین است که این خود ضریب ظرفیت این نیروگاه‌ها را به حدود ۹۰٪ می‌رساند. نیروگاه‌هایی که از توربین‌های گاز طبیعی برای تولید انرژی الکتریکی استفاده می‌کنند به علت پر هزینه بودن تأمین سوخت معمولاً تنها در زمان اوج مصرف به تولید می‌پردازند. به همین دلیل ضریب ظرفیت این توربین‌ها پایین بوده و معمولاً بین ۵–۲۵٪ می‌باشد.

بنا به یک تحقیق در دانشگاه استندورد که در نشریه کاربردی هواشناسی و اقلیم‌شناسی نیز به چاپ رسیده در صورت ساخت بیش از ده مزرعه بادی در مناطق مناسب و به‌طور پراکنده می‌توان تقریباً از ۳/۱ انرژی تولیدی آن‌ها برای تغذیه مصرف‌کننده‌های دائمی استفاده کرد.

محدودیت‌های ادواری و نفوذ

میزان انرژی الکتریکی تولیدی توسط نیروگاه‌های بادی می‌تواند به شدت به چهار مقیاس زمانی ساعت به ساعت، روزانه و فصلی وابسته باشد. این میزان به تحولات آب و هوایی سالیانه نیز وابسته‌است اما تغییرات در این مقیاس زیاد محسوس نیستند. از آنجایی که برای ایجاد ثبات در شبکه، میزان انرژی الکتریکی تأمین شده و میزان مصرف باید در تعادل باشند از این جهت تغییرات دائم در میزان تولید این ضرورت را به وجود می‌آورد که از تعداد بیشتری نیروگاه بادی برای تولیدی متعادل‌تر در شبکه استفاده شود. از طرفی ادواری بودن طبیعی تولید انرژی باد موجب افزایش هزینه‌های تنظیم و راه‌اندازی می‌شود و (در سطوح بالا) ممکن است نیازمند اصول مدیریت تقاضای انرژی یا ذخیره‌سازی انرژی باشد.

از ذخیره‌سازی با استفاده از نیروگاه‌های آب تلمبه‌ای یا دیگر روش‌ها ذخیره‌سازی برق در شبکه می‌توانند برای به وجود آوردن تعادل در میزان تولید نیروگاه‌های بادی استفاده کرد اما در مقابل استفاده از این روش‌ها موجب افزایش ۲۵٪ هزینه‌های دائم اجرای چنین طرح‌هایی می‌شوند. ذخیره‌سازی انرژی الکتریکی موجب به وجود آمدن تعادل بین دو بازه زمانی کم مصرف و پر مصرف خواهد شد و از این جهت میزان صرفه‌جویی عاید از ذخیره‌سازی انرژی هزینه‌های اجرای آن را جبران می‌کند. یکی دیگر از راهکارهای ایجاد تعادل در تولید و مصرف سازگار کردن میزان مصرف با میزان تولید با استفاده از ایجاد تعرفه‌های متفاوت زمانی برای مصرف‌کننده‌هاست.

پیش‌بینی‌پذیری

با توجه به تغییرات باد قابلیت پیش‌بینی محدودی (ساعتی یا روزانه) برای خروجی نیروگاه‌های بادی وجود دارد. مانند دیگر منابع انرژی تولید باد نیز باید از قابلیت برنامه‌ریزی برخوردار باشد اما طبیعت باد این پدیده را ذاتاً متغیر می‌کند. گرچه از روش‌هایی برای پیش‌بینی تولید توان این نیروگاه‌ها استفاده می‌شود اما در کل قابلیت پیش‌بینی‌پذیری این نیروگاه‌ها پایین است.

این عیب این‌گونه نیروگاه‌ها معمولاً باستفاده از روش‌های ذخیره‌سازی انرژی مانند استفاده از نیروگاه‌های آب تلمبه‌ای تا حدودی بر طرف می‌شود.

جاگذاری توربین

انتخاب مکان مناسب برای نصب نیروگاه بادی و جهت نصب توربین‌ها در محل از نکات حیاتی برای توسعه اقتصادی این‌گونه نیروگاه‌هاست. گذشته از دسترسی باد مناسب در محل مورد بحث، عوامل مهم دیگری مانند دسترسی به خطوط انتقال، قیمت زمین مورد استفاده، ملاحظات استفاده از زمین و مسائل زیست‌محیطی ساخت و بهره‌برداری نیز در انتخاب یک محل برای نصب نیروگاه‌ها مؤثر است. از این رو استفاده از نیروگاه‌های بادی در مناطق دور از ساحل ممکن است هزینه‌های مربوط به ساخت یا ضریب ظرفیت را با استفاده از کاهش هزینه‌های تولید برق جبران کنند.

بهره‌برداری از برق بادی

در جهان هزاران توربین بادی در حال بهره‌برداری وجود دارد که ظرفیت تولیدی آن‌ها به ۷۳٫۹۰۴ مگاوات می‌رسد و در این میان اتحادیه اروپا ۶۵٪ از کل توان بادی جهان را تولید می‌کند. تولید برق بادی در میان دیگر روش‌های تولید انرژی الکتریکی دارای بیشتری شتاب رشد در قرن ۲۱ بوده‌است به‌طوری‌که تولید توان بادی جهان در بین سال‌های ۲۰۰۰ تا ۲۰۰۶ چهار برابر شده‌است. در دانمارک و اسپانیا برق بادی حدود ۱۰٪یا بیشتر ازکل تولید انرژی الکتریکی را تشکیل می‌دهد. گرچه ۸۱٪ از توان بادی تولید شده در جهان به ایالات متحده و اتحادیه اروپا تعلق دارد اما سهم پنج کشور اول تولیدکننده برق بادی از ۷۱٪ در سال ۲۰۰۴ به ۵۵٪ در سال ۲۰۰۵ کاهش یافته‌است.

انجمن جهانی انرژی بادی پیش‌بینی کرده در سال ۲۰۱۰ ظرفیت تولیدی برق بادی به ۱۶۰ گیگاوات برسد. با توجه به میزان تولید کنونی ۷۳٫۹ مگاوات این رقم پیش‌بینی یک رشد ۲۱٪ را در هر سال نشان می‌دهد.

از جمله کشورهایی که سرمایه گذلری زیادی در این زمینه انجام داده‌اند می‌توان به آلمان، اسپانیا، ایالات متحده، هند و دانمارک اشاره کرد. کشور دانمارک یکی از کشورهای برجسته در تولید تجهیزات و استفاده از توان بادی است. دولت دانمارک در دهه ۱۹۷۰ ملزم شد تا تولید انرژی الکتریکی از انرژی باد را به ۵۰٪ کل تولید برق برساند و تا به امروز برق بادی ۲۰٪ (بیشترین میزان تولید برق بادی از نظر درصد تولید) از کل تولید انرژی الکتریکی در این کشور را تشکیل می‌دهد؛ این کشور هچنین پنجمین تولیدکننده بزرگ برق بادی محسوب می‌شود (در حالی که دانمارک از نظر میزان مصرف در جهان رتبه ۵۶ را دراست). آلمان و دانمارک دو کشور پیشتاز در زمینه صادرات توربین‌های بزرگ (۰٫۶۶ تا ۵ مگاوات) به حساب می‌آیند.

آلمان یکی از کشورهای پیشتاز در زمینه تولید برق بادی بوده‌است به‌طوری‌که در سال ۲۰۰۶ این کشور ۲۸٪ از کل توان بادی تولید شده در جهان (۷٫۳٪ در آلمان) را به خود اختصاص داده‌است. این در حالی است که آلمان برنامه دارد تا سال ۲۰۱۰ ۱۲٫۵٪ از کل توان تولیدی خود را از منابع تجدیدپذیر تأمین نماید. کشور آلمان دارای حدود ۱۸۶۰۰ توربین بادی است که بیشتر آن‌ها در شمال آلمان نصب شده‌اند که در این میان سه توربین از بزرگترین توربین‌های جهان نیز وجود دارند.

در سال ۲۰۰۵ دولت اسپانیا قانونی را تصویب کرد که بر طبق آن نصب ۲۰۰۰۰ مگاوات ظرفیت بادی تا سال ۲۰۱۲ در برنامه دولت قرار گرفت. البته در سال ۲۰۰۶یارانه‌ها و پشتیبانی دولت از ساخت این ظرفیت‌ها به ناگهان قطع شد. قابل ذکر است که در سال ۲۰۰۵ در هر دو کشور آلمان و اسپانیا تولید انرژی الکتریکی از راه استفاده از نیروگاه‌های بادی از تولید انرژی الکتریکی به وسیله نیروگاه‌های برق آبی بیشتر بود.

در سال‌های اخیر ایالات متحده از هر کشور دیگری بیشتر توربین بادی به شبکه برق خود افزوده‌است. تولید برق بادی در ایالات متحده در بازه زمانی بین فوریه ۲۰۰۶ تا فوریه ۲۰۰۷ ۳۱٫۸٪ رشد را نشان می‌دهد. ایالت تگزاس با پیشی گرفتن از کالیفرنیا اکنون بیشترین تولید برق بادی را دربین ایالت‌های مختلف این کشور دارد. تگزاس در سال ۲۰۰۹ نزدیک به ۱۷٪ برق خود را از باد بدست آورد، و تگزاس اکنون بزرگترین مزرعه بادی جهان را با ۷۸۲ مگاوات ظرفیت در روستایی به نام راسکو در اختیار دارد.

برق بادی در مقیاس‌های کوچک

تجهیزات تولید برق بادی در مقیاس کوچک (۱۰۰ کیلووات یا کمتر) معمولاً برای تغذیه منازل، زمین‌های کشاورزی یا مراکز تجاری کوچک مورد استفاده قرار می‌گیرد. در برخی از مکان‌های دور افتاده که مجبور به استفاده از ژنراتورهای دیزلی هستند مالکان محل ترجیح می‌دهند که از توربین‌های بادی استفاده کنند تا از ضرورت سوزاندن سوخت‌ها جلوگیری شود. در برخی موارد نیز برای کاهش هزینه‌های خرید برق یا برای استفاده برق پاک از این توربین‌ها استفاده می‌شود.

برای تغذیه منازل دورافتاده از توربین‌های بادی با اتصال به باتری استفاده می‌شود. در ایالات متحده استفاده از توربین‌های بادی متصل به شبکه در رنج‌های ۱ تا ۱۰ کیلووات برای تغذیه منازل به‌طور فزاینده‌ای در حال گسترش است. توربین‌های متصل به شبکه در هنگام کار نیاز به استفاده از برق شبکه را از بین می‌برند. در سیستم‌های جدا از شبکه یا باید از برق به صورت دوره‌ای استفاده کرد یا از باتری برای ذخیره‌سازی انرژی استفاده کرد.

در مناطق شهری که امکان استفاده از باد در مقیاس‌های زیاد وجود ندارد نیز ممکن است از انرژی بادی در کاربردهای خاصی مانند پارک مترها یا درگاه‌های بی‌سیم اینترنت با استفاده از یک باتری یا یک باتری خورشیدی استفاده شود تا ضرورت اتصال به شبکه از بین برود.

 

انواع کاربردتوربین‌های بادی

پمپاژ اب در مناطق دور افتاده

یکی از کاربردهای مهم غیر نیرو گاهی انرژی حاصل از استحصال انرژی بادی پمپاژ آب می‌باشد. با توجه به برتری انرژی برق. در سال‌های انقلاب صنعتی ورونق پمپ‌های الکترو موتور به جای پمپ‌های بادی هنوز پمپ‌های بادی در مناطقی از چین وافریقای جنوبی آرژانتین وایالات متحده آمریکا به فروش می‌رسد. پمپ‌های بادی عمدتاً از نوع توربین‌های بادی پر پره کلاسیک می‌باشد؛ که تکنولوژی در این زمینه دز دهه‌های اخیر به مداوم بهبود یافته‌است. موارد استفاده از پمپ‌های بادی جهت پمپاژ اب عبارتند از: الف-تامین اب مصرفی ب-آ بیاری زمین در مقیاس کم ج-آبیاری حجم کم جهت پرورش ابزیان د-تامین اب آشامیدنی حیوانات در مناطق دور افتاده.

توربین‌های کوچک تولیدکننده برق

جزیره مصرف به منطقه‌ای که برق‌رسانی به ان از طریق شبکه سراسری برق غیر منطقی و غیر اقتصادی باشد و همچنین تأمین برق ان از طریق مولدهای کوچک برقی تأمین می‌شود گفته می‌شود. توربین بادی نقش مؤثری در بهبود تأمین برق جزیره مصرف ویا به عنوان اصلی‌ترین کاربرد غیر نیروگاهی به حساب می‌آید. از نظر هزینه اولیه توربین‌های برق بادی در مقایسه با مجموع موتور برق و هزینه سوخت ان کاملاً مقرون به صرفه می‌باشد. امروزه این توربین‌ها در مقیاس پایین تا قدرت ۱۰ کیلو وات برای تأمین برق مورد نیاز مناطق جزیره مصرف مورد استفاده قرار می‌گیرد؛ که می‌توان ازآن به حالت ترکیبی با منابع فتولتاییک با ژنراتورهای دیزلی مورد استفاده قرار گیرد.

 

شارژ باتری

سومین دسته کاربرد غیر نیروگاهی شارژ باتری می‌باشد. جهت شارژ باتری استفاده از توربین‌های باقیمت ارزان و توربین‌های با روتور قطر ۳ متر کاربرد دارد؛ که استفادهاز آن در مصرف خانگی و کاربردهای تجاری می‌باشد و در مصارف مشابه تأمین برق دستگاه‌های کمک ناوبری و مخابرات نیز کاربرد فراوان دارد.

 

آثار زیست‌محیطی

انتشار CO۲ و آلودگی

توربین‌ها بادی برای راه‌اندازی و بهره‌برداری نیاز به هیچ گونه سوختی ندارند و بنابراین در قبال انرژی الکتریکی تولید آلودگی مستقیمی ایجاد نمی‌کنند. بهره‌برداری از این توربین‌ها دی‌اکسید کربن، دی‌اکسید گوگرد، جیوه، ذرات معلق یا هیچ گونه عامل آلوده‌کننده هوا تولید نمی‌کند. اما توربین‌ها بادی در مراحل ساخت از منابع مختلفی استفاده می‌کنند. در طول ساخت نیروگاه‌های بادی باید از موادی مانند فولاد، بتن، آلمینیوم و… استفاده کرد که تولید و انتقال آن‌ها نیازمند مصرف انواع سوخت‌هاست. دی‌اکسید کربن تولید شده در این مراحل پس از حدود ۹ ماه کار کردن نیروگاه جبران خواهد شد.

نیروگاه‌های سوخت فسیلی که برای تنظیم برق تولیدی در نیروگاه‌های بادی مورد استفاده قرار می‌گیرند موجب ایجاد آلودگی خواهند شد: بعضی از اوقات به این نکته اشاره می‌شود که نیروگاه‌های بادی نمی‌توانند میزان دی‌اکسید کربن تولیدی را کاهش دهند چراکه برق تولیدی از طریق نیروگاه بادی به دلیل نامنظم بودن همیشه باید به وسیله یک نیروگاه سوخت فسیلی پشتیبانی شود. نیروگاه‌های بادی نمی‌توانند به‌طور کامل جایگزین نیروگاه‌های سوخت فسیلی شوند اما با تولید انرژی الکتریکی مبنای تولیدی نیروگاه‌های حرارتی را کاهش داده و از تولید آن‌ها می‌کاهند که به این ترتیب میزان انتشار دی‌اکسید کربن کاهش می‌یابد.

 

تأثیرات بوم شناختی

برخلاف نیروگاه‌های هسته‌ای و نیروگاه‌های سوخت فسیلی که مقدار زیادی آب را برای خنک کردن منتشر می‌کنند، نیروگاه‌های بادی نیازی به آب برای تولید انرژی الکتریکی ندارند.

 

دربارهٔ نشت روغن یا آب سیالی که در نیروگاه‌ها مورد استفاده قرار می‌گیرد حوادث متعددی گزارش شده. در برخی موارد سیال وارد آب شرب مناطق اطراف نیز می‌شود که خسارت‌هایی را بر جای خواهد گذاشت. این سیال‌های معمولاً در اثر حرکت در پره توربین موادی را در خود حل کرده و سپس در محیط پراکنده می‌کنند.

استفاده از زمین

توربین‌های بادی باید ده برابر قطرشان در راستای باد غالب و پنج برابر قطرشان در راستای عمودی از هم فاصله داشته باشند تا کمترین تلفات حاصل شود. در نتیجه توربین‌های بادی تقریباً به ۰٫۱ کیلومترمربع مکان خالی به ازای هر مگاوات توان نامی تولیدی نیازمند هستند.

معمولاً برای نصب این توربین‌ها نیازی به پاکسازی درختان منطقه نیست. کشاورزان می‌توانند برای ساخت این توربین‌ها زمین‌های خود را به شرکت‌های سازنده اجاره می‌دهند. در ایالات متحده کشاورزان حدود ۲ تا ۵ هزار دلار به ازای هر توربین در هر سال دریافت می‌کنند. زمین‌ها مورد استفاده قرار گرفته برای توربین‌ها بادی همچنان می‌توانند برای کشاورزی و چرای دام مورد استفاده قرار بگیرند چراکه تنها ۱٪ از زمین برای ساخت پی توربین و راه دسترسی مورد استفاده قرار می‌گیرد و به عبارت دیگر ۹۹٪ زمین هنوز قابل استفاده‌است.

توربین‌های بادی عموماً در مناطق شهری نصب نمی‌شوند چراکه ساختمان‌ها جلوی وزش باد را سد می‌کنند و قیمت زمین نیز معمولاً زیاد است. با این حال پروژه نمایشی تورنتو اثبات کرد که نصب توربین‌های بادی در چنین مکان‌هایی نیز ممکن است.

آثار بر روی حیات وحش

برخی از توربین‌های بادی موجب کشته شدن پرنده‌ها به ویژه پرنده‌های شکاری می‌شوند البته مطالعات نشان می‌دهد که تعداد پرنده‌های کشته شده توسط توربین‌های بادی در مقابل عوامل انسانی دیگر کشته شدن پرندگان مانند خطوط برق، ترافیک، شکار، ساختمان‌های بلند و به ویژه استفاده از منابع آلوده انرژی تعداد بسیار ناچیزی است؛ برای مثال در انگلستان که در آن چندین هزار توربین بادی وجود دارد تقریباً در هر سال تنها یک پرنده در هر توربین کشته می‌شود در حالی که تنها در اثر آثار مخرب استفاده از خودروها هر سال در حدود ۱۰ میلیون پرنده کشته می‌شوند. در ایالات متحده توربین‌ها هر سال در حدود ۷۰٬۰۰۰ پرنده را می‌کشند که در مقابل ۵۷ میلیون پرنده کشته شده در اثر استفاده از خودروها یا ۹۷٫۵ میلیون پرنده کشته شده در اثر برخورد با شیشه‌ها مقدار اندکی است. مقاله‌ای در رابطه با طبیعت اظهار داشته که هر توربین به‌طور متوسط هر سال ۰٫۰۳پرنده یا به عبارتی ۱ پرنده در طول ۳۰ سال می‌کشد.

نیروگاه بادی در آسمان

رایان رابرت مهندس استرالیایی راه حل جالبی برای نیروگاه بادی در آسمان دارد به اعتقاد او به جای برافراشتن توربینها روی زمین، آن‌ها را در جریان تند باد در ارتفاع ۱۵ تا ۴۵ هزار پایی شناور می‌سازیم. او با همکاری سه مهندس دیگر دستگاهی را ساخته‌اند که ژنراتور الکتریکی پرنده نام گرفته‌است این دستگاه مانند بادبادک در هوا شناور می‌ماند و بادهایی با سرعت ۲۰۰ مایل بر ساعت، پره‌های آن را می‌چرخانند. جریان الکتریکی تولید شده از راه رشته بسیار محکمی به ایستگاه زمینی فرستاده می‌شود. به نظر این مهندس استرالیایی می‌توان ۶۰۰عدد از این دستگاه‌ها را در هوا داشت که هر کدام ۲۰ مگاوات برق تولید می‌کنند.

 

نیروگاه بادی در دریا

گاهی باد مورد نیاز در فراساحل به دست می‌آید که عمق آب عامل تعیین‌کننده هزینه‌ها است. عموماً تا ۴۰ کیلومتری ساحل می‌توان تأسیسات را برپا کرد. برآورد شده که توان باد فراساحلی حداقل ۲ برابر توان بادی روی خشکی هستند. تکنولوژی استحصال انرژی باد فراساحل کاملاً مهیا است ولی هزینه کار در فراساحل و انتقال انرژی به ساحل عموماً تولید برق را غیر اقتصادی می‌کند.

 

بزرگترین توربین بادی جهان

بزرگترین توربین بادی جهان درحال حاضر در دریای شمال در فاصله ۲۴ کیلومتری سواحل اسکاتلند نصب شده و در حال آزمایش است. این نخستین باری است که توربین‌هایی به این ابعاد در دریا آزمایش می‌شوند. ژنراتور توربین‌ها در عمق ۴۴ متری سطح دریا کار گذاشته شده‌است که در نوع خود رکورد جدیدی است. توربین‌هایی در این ابعاد برای نصب در دریا و دور از ساحل مناسب هستند تا از وزش پیوسته و بدون تلاطم باد بهره‌گیری کنند. انتظار می‌رود این توربین‌ها ۹۶ درصد اوقات شبانه‌روز (۸۴۴۰ ساعت در سال) در حال کار باشند.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

منابع:

  • انرژی های تجدیدپذیر، انجمن جهانی سیاست گذاری انرژی های تجدیدپذیر.
  • انرژی های تجدیدپذیر، شهرام درخشان.
  • انرژی های پاک، لیلا گلزار.
  • انرژی از جنس خورشید، ناهید فرازمند.
  • باد منبعی غنی، محمد علی عبدلی.

  انتشار : ۳ اردیبهشت ۱۳۹۷               تعداد بازدید : 125

دفتر فنی دانشجو

توجه: چنانچه هرگونه مشكلي در دانلود فايل هاي خريداري شده و يا هر سوال و راهنمایی نیاز داشتيد لطفا جهت ارتباط سریعتر ازطريق شماره تلفن و ايميل اعلام شده ارتباط برقرار نماييد.

فید خبر خوان    نقشه سایت    تماس با ما