مرکز دانلود خلاصه کتاب و جزوات دانشگاهی

مرکز دانلود تحقیق رايگان دانش آموزان و فروش آنلاين انواع مقالات، پروژه های دانشجويی،جزوات دانشگاهی، خلاصه کتاب، كارورزی و کارآموزی، طرح لایه باز کارت ویزیت، تراکت مشاغل و...(توجه: اگر شما نویسنده یا پدیدآورنده اثر هستید در صورت عدم رضایت از نمایش اثر خود به منظور حذف اثر از سایت به پشتیبانی پیام دهید)

نمونه سوالات کارشناسی ارشد دانشگاه پیام نور (سوالات تخصصی)

نمونه سوالات کارشناسی دانشگاه پیام نور (سوالات تخصصی)

نمونه سوالات دانشگاه پيام نور (سوالات عمومی)

کارآموزی و کارورزی

مقالات رشته حسابداری و اقتصاد

مقالات علوم اجتماعی و جامعه شناسی

مقالات روانشناسی و علوم تربیتی

مقالات فقهی و حقوق

مقالات تاریخ- جغرافی

مقالات دینی و مذهبی

مقالات علوم سیاسی

مقالات مدیریت و سازمان

مقالات پزشکی - مامایی- میکروبیولوژی

مقالات صنعت- معماری- کشاورزی-برق

مقالات ریاضی- فیزیک- شیمی

مقالات کامپیوتر و شبکه

مقالات ادبیات- هنر - گرافیک

اقدام پژوهی و گزارش تخصصی معلمان

پاورپوئینت و بروشورر آماده

طرح توجیهی کارآفرینی

آمار سایت

آمار بازدید

  • بازدید امروز : 1358
  • بازدید دیروز : 2258
  • بازدید کل : 13139207

زیست شناسی سلولی ملکولی


زیست شناسی سلولی ملکولی

 

مقدمه

زیست شناسی سلولی (Cell biology) ، علمی است که به بررسی و شناخت سلول از جنبه‌های مختلف مولکولی ، ساختمانی و فراساختمانی ، فیزیولوژیکی ، پیدایش ، تکامل و رفتار سلولها در جاندارن تک سلولی و پرسلولی می‌پردازد و دارای شاخه‌های متعددی است.

به دلیل گستردگی زیاد علم زیست شناسی سلولی ، تنها به معرفی شاخه‌های عمده آن می‌پردازیم:

سلول شناسی شاخه‌ای از زیست شناسی سلولی است که از ساختمان ، عمل و پیدایش سلولها بحث می‌کند.

فیزیولوژی سلولی ، علم بررسی اعمال زیستی سلولها و اجزا مختلف آنهاست. عمده‌ترین مسائل مورد توجه در این علم ، مطالعه ماهیت غشای سلولی ، تغذیه سلول ، رشد و نمو ، ترشح و سایر فعالیتهای سلولی است.

ژنتیک سلولی ، با استفاده از روشهای سلول شناسی و ژنتیک ، از توارث و تنوع سلولها ، بحث می‌کند. این علم به مطالعه ماده ژنتیکی سلولها و بویژه کروموزومها از نظر تعداد و شکل در سلولهای گونه‌های مختلف می‌پردازد.

شیمی سلولی ، با استفاده از ابزارها و فنون شیمیایی ویژه ، با حداقل تغییرات ممکن ، ترکیبات شیمیایی سلولها و جای آنها را بررسی می‌نماید. چنین مطالعاتی هم اکنون در آسیب شناسی (Pathology) نیز مورد استفاده است.

فیزیک سلولی ، با استفاده از ابزار ، روشها و قوانین فیزیکی به بررسی پدیده‌های زیستی سلول و اجزای سازنده آن می‌پردازد.

زیست شناسی مولکولی به بررسی مولکول‌های سازنده سلول بویژه ماکرومولکولها از نظر نوع و ساختمان ، ریخت ، تکامل ، گسترش و نقش آنها در پدیده‌های زیستی سلول می‌پردازد. بیوشیمی ماکرومولکولها و ژنتیک مولکولی از مباحث مورد توجه این شاخه است.

 

تاریخچه

فلاسفه و طبیعی‌دانان قدیم بویژه ارسطو در عهد باستان ، به این نتیجه رسید که جانوران و گیاهان ، با همه پیچیدگی که در سازمانشان وجود دارد، تنها از تعداد کمی از اجزایی که در هر یک از آنها تکرار شده ، ساخته شده‌اند. با اختراع عدسیهای بزرگ در سال (1665) ، «رابرت هوک» برشهای چوب پنبه‌ای ساختمان سلولی را کشف کرد. در همان زمان «آنتون لون هوک» با میکروسکوپ ساده خود موجودات تک سلولی را در آب راکد مشاهده کرد.

«شلایدن» و «شوان» در سال (1839) ، نظریات خود را به صورت نظریه سلولی ارائه دادند که بر اساس آن کلیه موجودات زنده از واحدهای ساختمانی به اسم سلول ساخته شده‌اند. از حدود سال 1950 روشهای مشاهده سلولها با میکروسکوپ الکترونی دقیق‌تر شد و به تدریج فرا ساختار سلولی مشخص گردید و نتایج بدست آمده ، تصورات پژوهشگران را در مورد طرز کار سلول متحول ساخت.

 

پیشرفتهای کنونی در زیست شناسی سلولی

در سالهای اخیر با ابداع روز افزون روشها و فنون جدید مطالعه سلولها ، زیست شناسی سلولی پیشرفتهای شایان توجهی داشته است. با بکار بردن ابزارهای نوری و الکترونی دقیق در زمینه‌های مختلف تحقیقات سلولی و نیز با استفاده از مواد رادیواکتیو و ایزوتوپهای مختلف ، مجهولات متعددی از اعمال پیچیده حیاتی سلولها برای بشر روشن شده است. توجه به شکل ، ساختمان و رفتار پرندگان ، ماهیها ، پستانداران و ... راهگشای ابداع ماشینهای پیچیده‌ای چون هواپیما ، کامپیوتر و نظایر آن بوده است.

تغییر در رمز وراثتی و بکار انداختن ژنهای مفید یا از کار انداختن ژنهای زیان بخش ، چشم انداز قابل ملاحظه دیگری است که تاکنون در جانداران مختلف با موفقیت زیادی همراه بوده و اساس علم مهندسی ژنتیک را پی‌ریزی کرده است.

در زمینه ژنتیک سلولی پیشرفتهای قابل ملاحظه‌ای بدست آمده است. برای مثال بسیاری از بیماریهای کروموزومی انسانی ، هم اکنون نه تنها در دوارن بعد از تولد از طریق کشت سلولهای مغز استخوان قابل تشخیص است، بلکه از ماههای ابتدایی نمو رویانی نیز با کشت سلولهای مایع آمنیونی شناخته می‌شود.

در زمینه کشت سلولها و بافتها هم اکنون پیشرفتهای شایانی نصیب بشر شده است. تا آنجا که با کشت سلولهای منفرد گیاهی تا حد بدست آوردن گیاه گلدار و در جانوران تا حد تشکیل بافتها ، موفقیت بدست آمده است.

دست بردن در رمز وراثتی و دست‌کاری ژنهای موجودات زنده ارتباط مستقیمی با فرهنگ حاکم بر جوامع بشری دارد. انجام این نوع تحقیقات به همان نحو که می‌تواند موجب حل بسیاری از مشکلات انسان باشد، ممکن است مورد سو استفاده قرار گیرد و مصائب جبران ناپذیری را بوجود آورد.

 

 

 

نظریه سلولی (Cell theory)

یکی از مفاهیم کلی و اساسی زیست شاسی نظریه سلولی است که بر مبنای آن همه موجودات زنده (جانوران ، گیاهان و تک سلولی‌ها) از سلول و فرآورده‌های فعالیت سلولها ، تشکیل شده‌اند. این نظریه با پژوهشهای متعدد که در ابتدای قرن 19 توسط پژوهشگرانی مانند میربل ، اوکن ، لامارک ، دوتروشه ، تورپن ، انجام شد، شکل گرفت و در نهایت منجر به مطالعات شلایدن و شوان گردید که نظریه سلولی را به صورت مشخص ارائه کردند.

نظریه سلولی تاثیر زیادی بر همه زمینه‌های تحقیقاتی زیستی داشته است، بطوری که بلافاصله پس از طرح آن ، مشخص شده که هر سلول از تقسیم سلولی قبل از خود بوجود می‌آید. پیشرفت و تکامل زیست شناسی سلولی در قرن 20 به دو دلیل عمده است:

افزایش حد تفکیک وسایل تجزیه که مهمترین آنها میکروسکوپ الکترونی و فنون مبوط به پراکندگی اشعه ایکس می‌باشد.

نزدیکی سلول شناسی با حوزه‌های دیگر تحقیقات زیستی مخصوصا با ژنتیک ، فیزیولوژی و بیوشیمی که بالاخره منجر به از میان رفتن مرزهای مصنوعی بین این علوم و ایجاد دانشی بر اساس تشکیلات مولکولی سلول گردید.

 

چشم انداز

تاکنون شناخت هر ابزار یا روش جدیدی در سایر علوم تجربی به نحوی موجب گسترش و پیشرفت علوم سلولی و مولکولی شده است و با اشاراتی که به برخی از پیشرفتهای سالهای اخیر در زمینه این علوم به عمل آمد، به راحتی می‌توان دستیابی به موارد زیر را به عنوان حداقل پیشرفتهای ممکن علوم سلولی و مولکولی در سالهای اینده پیش بینی کرد:

شناخت کامل سازمان مولکولی سلول و فرایندهای زیستی وابسته به آن.

فراهم آوردن امکانات انجام پدیده‌های پیچیده زیستی، از جمله سنتز انواع مختلف پروتئینها ، آنزیمها ، اسیدهای هسته‌ای و ماکرومولکول‌های دیگر در شرایط آزمایشگاهی.

تغییرات انتخابی در کد ژنتیکی و از آن طریق کاستن و حتی از میان بردن نواقص و بیماریهای ژنتیکی در انسان ، جانور و گیاه.

امکان تعیین و تغییر جنسیت جنین قبل از تولد.

ایجاد جنسها و گونه‌های جدید جانداران با تغییر در کدهای ژنتیکی.

 

 

سلول شناسی

سلول واحد ساختمان و کار اساسی موجودات زنده است. درست همان گونه که اتم واحد ساختمانی و کار اساسی ساختمانهای مولکولی است. سلول شناسی (Cytology) شاخه‌ای از زیست شناسی سلولی است که از ساختمان ، عمل ، تکثیر و پیدایش سلولها بحث می‌کند.

سلولها واحدهای ساختمانی و عملی تمامی موجودات زنده را تشکیل می‌دهند. کوچکترین موجودات تک سلولی و میکروسکوپی بوده، در حالی که موجودات بزرگتر ، پرسلولی هستند. برای مثال بدن انسان دارای حداقل 1014 سلول می‌باشد. موجودات تک سلولی شامل انوع متعدد بوده و در هر محیطی ، از مناطق سردسیر تا مناطق گرمسیر در داخل بدن موجودات بزرگتر وجود دارند. موجودات پر سلولی متشکل از انواع مختلف و متعدد سلولها بوده که هر کدام دارای شکل و عمل متفاوت و فعالیت اختصاصی هستند. بدون توجه به اندازه و پیچیدگی موجودات پرسلولی ، هر کدام از سلولهای آنها تا حدودی منحصر و مستقل هستند.

علی‌رغم تفاوتهای متعدد در بین انواع مختلف ، سلولها دارای خصوصیات ساختمانی مشترکی هستند. غشای پلاسمایی محیط سلول را معین نموده و محتویات آن را از محیط اطراف جدا می‌کند. ماده داخلی سلول که توسط غشای پلاسمایی احاطه شده است، به نام سیتوپلاسم ، از محلول آبی ، به نام سیتوزول تشکیل شده است که در ان انواع مختلفی از ذرات نامحلول به شکل معلق وجود دارند. تمامی سلولهای زنده حداقل برای قسمتی از عمر خود ، دارای یک هسته (Nucleus) یا شبه هسته بنام نوکلوئید می‌باشند که در داخل آن ژنوم (سری کامل ژنها که از روی DNA تشکیل شده است) ذخیره و همانندسازی می‌گردد. سلولهای دارای پوشش هسته‌ای را یوکاریوت و سلولهای فاقد پوشش هسته‌ای را پروکاریوت گویند.

 

تاریخچه علم سلول شناسی

توجه زیست شناسان از اواخر قرن بیستم و به خصوص از 1940 به بعد ، با ابداع و بکار گرفتن فنون بیوشیمیایی به شناخت اعمال پیچیده سولی معطوف گردید. مطالعات شارگاف (1947) ، ویلکینز (1950) و کوری (1951) بر روی ساختار مولکولی DNA منجر به کشف ساختمان مولکولی DNA توسط واتسون و کریک در سال (1953) گردید.

از جمله کارهای درخشان دهه‌های 1950 تا 1970 در زمینه بیوسنتز اسیدهای هسته‌ای و پروتئینها ، می‌توان از کارهای تحقیقاتی مسلسون و استال بر روی همانند سازی DNA ، کریک بر روی رمز وراثتی ، کورنبرگ بر روی آنزیمهای بیوسنتز DNA نام برد. بطور کلی تا سال 1940 مطالعه سلول جنبه توصیفی داشته است (Cytology) و تنها پس از این زمان است که سلول شناسی جای خود را به زیست شناسی سلولی (Cell biology) داده است.

 

ابعاد سلولی

اکثر سلولها میکروسکوپی بوده و با چشم غیر مسلح دیده نمی‌شوند. سلولهای حیوانی و سلولهای گیاهی ، دارای قطری حدود 5 تا 100 میکرومتر بوده و بسیاری از باکتریها تنها 1 تا 2 میکرومتر طول دارند. چه چیزی ابعاد سلولی را محدود می‌نماید؟ حداقل اندازه سلول احتمالا توسط حداقل تعداد هر نوع بیومولکول مورد نیاز سلول تعیین می‌گردد.

حد بالای اندازه سلول احتمالا توسط میزان انتشار مولکولهای حل شده در سیستمهای آبی تنظیم می‌گردد. یک سلول باکتری که برای تولید انرژی وابسته به واکنشهای مصرف اکسیژن است، می‌بایست اکسیژن مولکولی را از محیط اطراف ، از طریق انتشار از غشا دریافت کند. این سلول باید نسبت سطح به حجم بیشتری داشته باشد تا بتواند به راحتی اکسیژن را جذب کند.

شکل یک سلول نیز می‌تواند به جبران اندازه بزرگ آن کمک نماید. بسیاری از سلولهای بزرگ ، علی‌رغم شکل تقریبا کروی دارای سطوح شدیدا پیچیده‌ای هستند که این امر سبب ایجاد سطح بیشتری برای همان حجم شده و برداشت مواد غذایی و دفع مواد زاید به محیط اطراف را تسهیل می‌نماید. مانند سلولهای عصبی یا نرونها که به شکل ستاره یا شدیدا منشعب هستند.

 

کاربرد سلولها و بافتها در مطالعات بیوشیمیایی

از آنجایی که تمامی سلولها از سلولهای اجدادی یکسانی ایجاد شده‌اند، دارای شباهتهای پایه‌ای خاصی هستند. مطالعه دقیق بیوشیمیایی تنها چند نوع سلول با وجود تفاوت در جزئیات بیوشیمیایی و ظاهر سطحی آنها ، کلیاتی را مشخص می‌کند که در مورد تمامی سلولها و موجودات کاربرد دارد. بطور مطلوب یک محقق مطالعه خود را با جداسازی آنزیمها و سایر اجزا سلولی آغاز نموده و برای این منظور از یک منبع غنی و یکدست استفاده می‌نماید. استفاده از منبع یکنواختی از یک آنزیم یا یک اسید نوکلئیک که در آن تمامی سلولها از نظر بیوشیمیایی و ژنتیکی یکسان هستند، هیچ شکی را در مورد نوع سلول بکار رفته برای تهیه جزء خالص شده ، باقی نمی‌گذارد.

بعضی بافتهای حیوانات آزمایشگاهی نظیر کبد موش ، مغز خوک و عضله خرگوش ، علی‌رغم یکسان نبودن تمامی سلولها ، منبع غنی مشابهی می‌باشند. بعضی از سلولهای حیوانی و گیاهی نیز در کشت سلولی تکثیر یافته و تعداد مناسبی از سلولهای یکسان (کلون شده) ایجاد می‌نمایند که برای بررسی بیوشیمیایی ، بکار می‌روند.

 

تکامل و ساختمان سلولهای پروکاریوتی

اولین سلولهای زنده ، پروکاریوتهای بی‌هوازی بودند. این سلولها 3.5 بیلیون سال قبل ظاهر شدند که در آن زمان اتمسفر فاقد اکسیژن بود. با گذشت زمان ، تکامل بیولوژیک باعث شد تا سلولها بتوانند فتوسنتز را انجام داده و اکسیژن را به عنوان یک محصول فرعی تولید کنند. با تجمع اکسیژن ، سلولهای پروکاریوتی قادر به انجام اکسیداسیون هوازی مواد سوختی شدند. دو گروه اصلی پروکاریوتها شامل یوباکتریها و آراکئی باکتریها در ابتدای دوره تکاملی جدا شدند. پوشش سلولی بعضی از انواع باکتریها شامل لایه‌هایی در خارج غشای پلاسمایی است که سبب سختی و محافظت می‌گردند.

بعضی از باکتریها دارای فلاژل بوده و برای حرکت به سوی جلو از آن استفاده می‌کنند. سیتوپلاسم باکتریها فاقد اندامکهای متصل به غشا بوده، ولی دارای ریبوزومها و گرانولهایی از مواد سوختی ذخیره شده و همچنین نوکلوئید هستند که DNA سلولی در آن قرار گرفته است. بعضی از باکتریهای فتوسنتتیک دارای غشاهای داخل سلولی وسیعی هستند که در آنها رنگدانه‌های تسخیر کننده نور وجود دارند.

 

تکامل و ساختمان سلولهای یوکاریوتی

حدود 1.5 بیلیون سال قبل ، سلولهای یوکاریوتی ظاهر شدند. این سلولها از پروکاریوتها بزرگتر بودند و ماده ژنتیکی آنها پیچیده‌تر بود. این سلولهای اولیه ارتباطات همزیستی با پروکاریوتها پیدا نمودند که در داخل سیتوپلاسم آنها زندگی می‌کردند. میتوکندریها و کلروپلاستهای امروزی از درون این همزیستهای اولیه مشتق شده‌اند. میتوکندریها و کلروپلاستها ، اندامکهای داخل سلولی هستند که توسط یک غشا دو لایه احاطه شده‌اند. این اندامکها محلهای ‌اصلی سنتز ATP در سلولهای یوکاریوتی هوازی هستند. کلروپلاستها تنها در موجودات فتوسنتتیک وجود دارند.

سلولهای یوکاریوتی امروزی دارای یک سیستم پیچیده غشاهای داخل سلولی هستند. این سیستم غشایی داخلی شامل پوشش هسته ، شبکه آندوپلاسمی صاف و خشن ، کمپلکس گلژی ، وزیکولهای ترشحی ، لیزوزومها و آندوزومها می‌باشند. ماده ژنتیکی موجود در سلولهای یوکاریوتی در داخل کروموزومها ، کمپلکسهای شدیدا منظم DNA و پروتئینهای هیستونی ، سازماندهی شده است. ویروسها انگل سلولهای زنده هستند و مسئول بسیاری از بیماریهای جدی انسانی می‌باشند.

سلول انسانی

چون سلول قادر است همه اعمال یک موجود زنده را بطور کامل انجام دهد، بنابراین به عنوان واحد حیات محسوب می‌گردد. ولی از آنجا که همه بافتها و ارگانهای بدن از اجتماع سلولها تشکیل شده ، بطور مرسوم سلول را واحد ساختمان بدن نامیده‌اند. ماده حیاتی تشکیل دهنده سلول را پروتوپلاسم (Protoplasm) می‌نامند که عمده قسمت آن غیر از هسته سلول ، سیتوپلاسم ، محتویات هسته (Karyoplasm) می‌باشد. پروتوپلاسم بوسیله غشایی از محیط اطراف جدا شده است که آن را غشای سلولی یا cell membrane می‌نامند. پروتوپلاسم از آب ، الکترولیتها ، املاح و ماکرومولکولهای آلی مانند پروتئینها ، پلی ساکاریدها ، لیپیدها و اسیدهای نوکلئیک تشکیل شده است که محیط و بستر مناسبی را برای فعالیتهای سلول فراهم می‌کند.

ارگانلها organelles ، ساختمانهای تخصص یافته‌ای هستند که اعمال مختلفی را هدایت می‌کنند و در داخل سیتوپلاسم پراکنده‌اند. در گذشته ، سیتوپلاسم منهای ارگانلها را محلولی بی‌شکل محسوب می‌نمودند و آنرا سیتوزول (مایع سلولی Sytosole) می‌نامیدند. استفاده از تکنیکهای پیشرفته بیانگر آن است که سیتوپلاسم سلول حاوی شبکه بسیار ظریف و پیچیده‌ای از الیاف باریک microtrabecular می‌باشد که همراه اجزای محلول آن در مجموع ماتریکس سلولی (cytomatrix) نامیده می‌شود. ساختمان و عملکرد ارگانلهای سلولی عبارتند از:

غشای سلولی

غشای سلولی ساختمانی است به ضخامت 7 تا 10 نانومتر که محدوده سلول را معین کرده و به عنوان سدی انتخابی ، مبادله مواد بین سلول و محیط اطرافش را کنترل می‌کند. بنابراین اولین نشانه آسیب سلولی ، متورم شدن سلول می‌باشد که در اثر از بین رفتن قدرت انتخابی غشا و هجوم مواد به داخل سلول بوجود می‌آید. غشای ساختمانی است لیپوپروتئینی یعنی بطور عمده از لیپیدها و پروتئینها تشکیل شده ، با وجود این ، مقدار کمی کربوهیدراتها نیز در ساختمان آن شرکت دارد.


ریبوزوم‌ها (Ribosomes)

ریبوزومها ذرات بسیار کوچک و متراکمی با ابعاد 15 تا 25 نانومترند که عمدتا از 7RNA و مقداری پروتئین ساخته شده‌اند. از نظر ساختمانی از دو زیرواحد کوچک و بزرگ تشکیل شده‌اند که هر دو زیرواحد در هستک ساخته شده‌اند و جهت شرکت در پروتئین‌سازی به سیتوپلاسم منتقل شده‌اند.

 

هسته سلول

هسته ساختمانی است گرد یا بیضوی به ابعاد 5 تا 10 میکرون که همه سلولهای بدن بجز گویچه‌های قرمز حاوی هسته می‌باشند. اغلب سلولها دارای یک هسته ، برخی دارای دو هسته (سلولهای کبدی) و معدودی دارای هسته‌های متعدد می‌باشند (سلولهای عضله مخطط). شکل و موقعیت هسته در هر سلول بستگی به شکل سلول دارد. هسته همه فعالیتهای حیاتی سلول از قبیل سنتز پروتئین ، تقسیم ، تمایز و رشد سلولی را کنترل می‌کند. هسته از نظر ساختمانی از سه قسمت غشای هسته ، کروماتین و هستک تشکیل شده است.

 

شبکه آندوپلاسمی

شبکه آندوپلاسمی با میکروسکوپ الکترونی به صورت وزیکولهای پهن یا لوله‌های پهن و دراز منشعب و مرتبط با هم شاهده می‌گردند. این لوله‌ها و وزیکولها شبکه بهم پیوسته و وسیعی را در داخل سیتوپلاسم بوجود می‌آورند که به دو صورت صاف (SER) و دانه‌دار (RER) دیده می‌شود. شبکه آندوپلاسمی صاف فاقد ریبوزوم در سطح خود می‌باشد و با داشتن آنزیمهای خاص وظایفی از جمله متابولیسم لیپیدها ، خنثی‌سازی سموم و ذخیره کلسیم را بر عهده دارد. شبکه آندوپلاسمی دانه‌دار ، دارای ریبوزوم در سطح خود می‌باشد. بنابراین در پروتئین سازی دخالت دارد.

 

دستگاه گلژی

دستگاه گلژی ، از کیسه‌ها و واکوئلهای پهن محدبی تشکیل شده که بطور موازی روی هم چیده شده‌اند. منحنی بودن کیسه‌های تشکیل دهنده دستگاه گلژی باعث می‌شود که این ارگانل از نظر شکل ظاهری دارای یک سطح محدب (cis) و یک سطح مقعر (Trans) باشد. گلژی معمولا در بالای هسته قرار دارد، ولی جایگاه آن در سلولهای مختلف ممکن است متفاوت باشد. وظیفه گلژی شرکت در پروتئین سازی با همکاری شبکه آندوپلاسمی دانه‌دار می‌باشد. پروتئینهای ساخته شده در شبکه آندوپلاسمی دانه‌دار ، توسط وزیکولهای حامل به دستگاه گلژی منتقل می‌گردند. چون وزیکولهای حامل به سطح محدب گلژی اتصال می‌یابند، سطح محدب گلژی را سطح سازنده نیز می‌نامند. در پروتئینهای منتقل شده به دستگاه گلژی ، تغییرات زیر به عمل می‌آید:

بریده شدن قطعات اضافی از مولکولهای اولیه

افزوده شدن مواد قندی

افزوده شدن سولفات

افزوده شدن فسفات

تغلیظ و بسته‌بندی

 

این تغییرات ضمن عبور از کیسه‌های متعدد گلژی انجام می‌گیرد و عقیده بر این است که کیسه‌های گلژی از نظر محتویات آنزیمی متفاوت‌اند. پروتئینها پس از بدست آوردن فرم نهایی خود به صورت گرانولهای محصور شده در غشا از سطح مقعر گلژی خارج می‌شوند. به همین دلیل سطح مقعر گلژی را سطح ترشحی نیز می‌نامند.

 

لیزوزومها

لیزوزومها با میکروسکوپ الکترونی به صورت گرانولهای متراکمی مشاهده می‌شوند که 0.5 تا 0.05 میکرون قطر دارند و بوسیله غشا محصور شده‌اند. لیزوزومها حاوی تقریبا 50 نوع آنزیم می‌باشند که همه آنها در PH اسیدی فعالند. بنابراین لیزوزوم دستگاه گوارش سلول محسوب می‌شود و قادر به هضم مواد خارجی وارده به سلول و ارگانلهای فرسوده شده می‌باشند.

 

 

 

میتوکندری

میتوکندری ارگانلی است گرد یا میله‌ای که ابعاد آن 0.5 تا 1 میکرون می‌باشد. به عنوان مرکز مولد انرژی سلول می‌باشد که قادرند انرژی شیمیایی نهفته در مواد آلی مختلف را به انرژی قابل استفاده سلول یعنی آدنوزین تری فسفات (ATP) تبدیل نمایند. بنابراین هرچه مصرف انرژی سلول بیشتر باشد، اندازه میتوکندری‌ها بزرگتر و تعداد آنها بیشتر خواهد بود و برعکس. حتی در درون سلول میتوکندریها در بخشی از سلول قرار می‌گیرند که نیاز به انرژی جهت انجام فعالیت بیشتر باشد.

میتوکندری بوسیله دو غشای بیرون و درونی محصور شده که غشای بیرونی صاف ولی غشای درونی دارای چینهای تیغه مانندی است که "کریستا" (crista) نامیده می‌شود و فضای بین دو غشا را "فضای بین غشایی" و فضای محدود شده بوسیله غشای درونی را "ماتریکس میتوکندری" می‌نامند که محتوی پروتئین ، DNA ، گرانولهای ریز و متراکمی مملو از کلسیم ، منزیم ، فسفات و ساختمانهای ریبوزوم مانند می‌باشد.

 

پراکسی‌زوم

پراکسی‌زومها در گذشته میکروبادی Microbody نیز خوانده می‌شدند. ارگانلهایی هستند شبیه لیزوزومها که حاوی آنزیمهای هیدروکسی اسید اکسیداز ، O - آمینو اکسیداز و کاتالاز می‌باشند که دو آنزیم اولی در تولید پراکسید هیدروژن H202 دخیلند و آنزیم کاتالاز سبب تجزیه آن به آب و اکسیژن می‌شود.

با توجه به فراوانی آنزیم کاتالاز در پراکسی‌زومها ، عقیده بر این است که سلولها را از اثرات سمی H2O2 حفظ می‌کنند که در سلولهای کبدی و کلیوی به تعداد فراوان یافت می‌شوند. منشا این ارگانل به عقیده بعضی ، شبکه آندوپلاسمی دانه‌دار و به عقیده برخی دیگر شبکه آندوپلاسمی صاف می‌باشد.

 

سانتریولها

سانتریولها به صورت دو ساختمان میله‌ای کوتاه و عمود بر هم در مجاورت هسته سلول قرار دارند و با سیتوپلاسم اطراف خود "سانتروزوم" نامیده می‌شود که قبل از تقسیم سلول همانندسازی می‌کنند و به قطبین سلول مهاجرت کرده و در دو سر دوکهای تقسیم قرار می‌گیرند. هر سانتریول ، استوانه‌ای است به قطر 0.2 میکرون و به طول 0.5 میکرون که دیواره آن از 9 سری میکروتوبول سه‌تایی تشکیل شده است. سانترویولها برای تشکیل مژه و تاژک ضروری‌اند. ارگانلهایی که تاکنون مورد بحث قرار گرفتند، همگی به‌وسیله غشا محصور شده‌اند، ولی ارگانلهایی نیز وجود دارند که فاقد غشا هستند و شامل میکروتوبولها و میکروفیلامنتها می‌باشند.

 

اجزای غیر زنده سلولی

اجزای غیرزنده سلولی ، بطور عمده شامل مواد غذایی ذخیره ‌شده ، شامل پروتئینها ، چربیها ، گلیکوژن و پیگمانها مثل ملانین و مواد زاید انباشته شده در داخل سلول می‌باشند.

 

 

سلول گیاهی

گیاهان از واحدهای زنده و فعالی به نام یاخته تشکیل شده‌اند که معمولا در درون دیواره یاخته‌ای جای دارند. هر یاخته ، از دیواره یاخته‌ای و غشای سیتوپلاسمی و سیتوپلاسم و هسته تشکیل شده است. وجود دیواره یاخته‌ای در گیاهان آنها را از جانوران متمایز می‌سازد. جنس این دیواره از سلولز است. هر دو یاخته مجاور را یک تیغه میانی از جنس پکتین از هم جدا می‌کند.

در یک توده سلولی همگن سازنده یک بافت ، همه سلولها دارای یک اندازه و یک شکل و معمولا چند وجهی‌اند. در گیاهان آلی اندازه سلولها متناسب با کار آنهاست و بر حسب ماهیت بافت و نقشی که در گیاه دارند اندازه آنها متفاوت است. اندازه و طول سلولهای سازنده پیکر گیاهان به ماهیت و ویژگی آن سلول بستگی دارد و به طول ملکولهای پروتئینی موجود در آنها و همچنین به میزان فعالیت هسته سلول و دوره استراحت آن ارتباط دارد.

سیتوپلاسم هر دو یاخته مجاور به وسیله منافذ موجود (پلاسمودسم‌ها) با هم ارتباط دارند. غشای سیتوپلاسمی از یک لایه دو مولکولی فسفولیپید تشکیل یافته است که پروتئینها به دو صورت سطحی و عمقی در آن غوطه‌ورند. نقش غشای سیتوپلاسمی حفظ تراوایی انتخابی است. زمینه سیتوپلاسم اساسی‌ترین قسمت درونی یاخته را تشکیل می‌دهد، زیرا اکثرا اعمال بیوسنتزی یاخته در آن صورت می‌گیرد. اندامکها در این زمینه قرار دارند. یکی از ویژگیهای سیتوپلاسم جنبش دائمی آن است که در اثر انقباض ریزرشته‌ها بوجود می‌آید، ولی ریزلوله‌ها به این جریان جهت می‌دهند.

 

روش مشاهده سلول گیاهی

ساده‌ترین راه مشاهده سلول گیاهی ، مطالعه سلولهای اپیدرم فلس پیاز است. اپیدرم فلس پیاز در زیر میکروسکوپ با بزرگنمایی ضعیف به صورت سلولهای چند وجهی کشیده‌ای است که بطور منظم که هم قرار داشته و بهم چسبیده‌اند. چنانچه این اپیدرم را با محلول رقیق یدیدوره آغشته سازیم هسته سلولها بطور محسوسی مشخص می‌گردد. در هسته یک یا دو هستک به صورت نقاط روشن دیده می‌شود. علاوه بر هسته در داخل سلولها واکوئل یا (حفره‌های سیتوپلاسمی) نیز وجود دارد که در ابتدا کوچک و پراکنده هستند و با رشد سلول بهم ملحق شده ، حفره‌هایی واحد و بزرگ را تشکیل می‌دهند.

در سلولهای پیر و مسن که واکوئلها قسمت اعظم فضای درونی آنها را فرا می‌گیرند هسته به گوشه‌ای رانده شده ، سایر محتویات سلول به صورت ورقه نازک در اطراف واکوئل مرکزی چسبیده به غشا باقی می‌مانند. به علت چسبندگی و یکی بودن غشای سیتوپلاسمی با غشای سلولزی لذا غشای سیتوپلاسمی بطور عادی قابل مشاهده نیست ولی با اضافه کردن چند قطره محلول آب و نمک 20 درصد و ایجاد کیفیت پلاسمولیز غشای سلولی از غشای سلولزی جدا و قابل رویت می‌گردد.

 

دیواره یاخته‌ای

در پیرامون اغلب یاخته‌های گیاهی و بعضی از یاخته‌های جانوری ، دیواره‌ای به نام دیواره یاخته‌ای وجود دارد. دیواره یاخته‌ای در یاخته‌های گیاهان ساختار نسبتا سخت سلولزی دارد و نوعی اسکلت بیرونی را ایجاد می‌کند که به این یاخته‌ها شکل هندسی و نسبتا ثابتی می‌دهد. این دیواره که دیواره نخستین نامیده می‌شود، بوسیله پروتوپلاسم زنده یاخته ایجاد می‌شود و وجود آن اساسی‌ترین وجه تمایز بین گیاهان و جانوران است. دیواره بین دو یاخته شامل شامل سه بخش است: هر یک از دو یاخته مجاور هم ، دیواره نخستین را تولید می‌کند و بین آن دو ، لایه بین یاخته‌ای به نام تیغه میانی مشترک بین دو یاخته وجود دارد.

جنس تیغه میانی از ترکیبات پکتینی ، مانند پکتین ، است. در نتیجه افزایش سن یاخته ، ممکن است مواد دیگری ساخته شوند و از سمت داخل یاخته به صورت لایه‌ای روی دیواره نخستین قرار بگیرند که دیواره دومین یا پسین نام دارد. ارتباط بین دو یاخته از راه پلاسمودسمها صورت می‌گیرد. پلاسمودسمها در دیواره‌های نخستین در سوراخهای ریز دیواره ، جایی که دیواره فاقد تیغه میانی است، بوجود می‌آیند و سیتوپلاسم از آن محلها از یاخته‌ای به یاخته دیگر جریان می‌یابد.

 

 

غشای سلولی

غشای سیتوپلاسمی از یک لایه دو مولکولی (دو ردیفی) فسفولیپید ساخته شده که هر مولکول آن شامل یک سر آب دوست و یک دم آب گریز است. استقرار این دو ردیف مولکول در مقابل یکدیگر طوری است که دمهای آب گریز به طرف داخل و در مقابل یکدیگر و سرهای آب دوست به طرف خارج قرار گرفته‌اند. مولکولهای پروتئین در سطح بیرونی یا درونی و یا در تمام غشا وجود دارند. نقش غشای سیتوپلاسمی حفظ تراوایی انتخابی است. این غشا چون سدی نیمه تروا عمل می‌کند، نیمه تراوا بودن غشا عامل اصلی در نقش آن است.

 

سیتوپلاسم

سیتوپلاسم شامل تشکیلات یاخته‌ای است که ساختاری نیمه شفاف ، بی‌شکل و تقریبا یکنواخت دارد و خاصیت شکست نور در آن کمی بیش از آب است. سیتوپلاسم پس از مرگ یاخته با رنگهای اسیدی آنیلین رنگ می‌گیرد، یعنی اسیدوفیل است. برعکس ، سیتوپلاسم زنده تقریبا خنثی است. زمینه سیتوپلاسم را هیالوپلاسم گویند. در هیالوپلاسم دو دسته عناصر به حالت شناور وجود دارند: یک دسته ضمایم دائمی مانند میتوکندریها ، پلاستها ، دستگاه گلژی و غیره که اندامک نامیده می‌شوند و دسته دیگر مواد غیر دائمی حاصل از اعمال زیست شیمیایی داخل هیالوپلاسم به نام اجسام ضمیمه هستند.

در هر حال محدوده هیالوپلاسم از طرف داخل ، غشای هسته و از طرف خارج ، غشای سیتوپلاسمی یاخته است. اندامکها عبارتند از: هسته ، میتوکندری ، شبکه آندوپلاسمی ، دستگاه گلژی ، ریزلوله‌ها و ریزرشته‌ها ، لیزوزوم‌ها ، واکوئلها و پلاستها. ذرات دیگری نیز در سیتوپلاسم دیده می‌شوند که از اندامکها کوچکترند و غشا ندارند و ریبوزوم نام دارند. اگر چه ریبوزومها غشا ندارد و اندامک به شمار نمی‌آیند، اما اهمیت زیادی در سوخت و ساز یاخته دارند. سیتوپلاسم در تبادلات یاخته ، مراحل مختلف سوخت و ساز و همچنین جنبشهای سیتوپلاسمی که ممکن است چرخشی و یا موضعی باشد، نقش دارد.

 

ریبوزومها

ریبوزومها ذرات کروی کوچکی هستند که به صورت آزاد یا روی شبکه‌ آندوپلاسمی درون سیتوپلاسم دیده می‌شوند. با استفاده از رادیوایزوتوپها توانسته‌اند محل تشکیل اجزای ریبوزوم را تعیین کنند. بدین سان معلوم شده که RNA ریبوزومی در هستک ساخته می‌شود و از آنجا به سیتوپلاسم منتقل می‌گردد. دو بخش ریبوزوم پس از ساخته شدن به یکدیگر می‌پیوندند و ریبوزوم کامل را بوجود می‌آورند. نقش اصلی ریبوزوم‌ها شرکت در ساختن پروتئین‌ها است، یعنی جایگاه ساخت پروتئین هستند.

شبکه آندوپلاسمی

شبکه آندوپلاسمی متشکل از لوله‌های تو خالی است. در برش به صورت مجاری ظریف غشایی توخالی ، با شاخه‌های فراوان و مرتبط با یکدیگر و یا به شکل مخازن پهن و بیش متراکم و پراکنده در تمام سیتوپلاسم مشاهده می‌شود. به بسیاری از نقاط دیواره بیرونی شبکه آندوپلاسمی ، تعداد فراوانی دانه‌های ریبوزوم متصل‌اند و به همین دلیل به دو صورت دانه‌دار و بدون دانه یافت می‌شوند: شبکه آندوپلاسمی دانه‌دار یا ناصاف که واجد ریبوزوم بوده و شبکه آندوپلاسمی بدون دانه یا صاف که فاقد ریبوزوم است. نقش شبکه آندوپلاسمی ، ذخیره و هدایت بعضی مواد درون یاخته و شرکت در تشکیل دیواره سلولزی یاخته و ایجاد ارتباط بین یاخته‌ها است.

 

دستگاه گلژی

دستگاه گلژی از واحهایی به نام تشکیل شده است. دیکتیوزومها سیستمهای غشایی ویژه‌ای هستند که از روی هم قرار گرفتن 5 تا 15 کیسه گرد و تخت با وزیکولهایی در لبه آنها تشکیل شده‌اند. هر کیسه را سیسترنا می‌نامند. دیکتیوزوم‌ها در بسته بندی پروتئین نقش دارند.

 

میکروبادیها

میکروبادیها وزیکولهایی هستند که از دیکتیوزومها جدا می‌شوند و خود اندامکهای ویژه‌ای را پدید می‌آورند. اینها ذرات کروی کوچکی هستند که در پیرامون آنها فقط یک غشا وجود دارد. میکروبادیها شامل پراکسی زوم و گلی اکسی زوم هستند.

 

لیزوزوم‌ها

لیزوزومها نیز از دیکتیوزوم‌ها جدا شده و خود اندامکهای ویژه‌ای را پدید می‌آورند و اندامکهایی به اندازه میتوکندریها و یا کوچکتر از آنها هستند که حاوی آنزیم‌های گوناگون می‌باشند و نقش آنها تجزیه سریع مولکولهای درشت و گوارش مواد هنگام تمایز یاخته‌ای است.

 

واکوئلها

بخش اعظم فضای یاخته‌های بالغ را واکوئل اشغال می‌کند که به صورت حفره یا کیسه‌ای است که غشایی به نام تونوپلاست آن را از سیتوپلاسم جدا می‌کند. درون واکوئل را مایعی به نام شیره واکوئلی پر کرده است. واکوئلها محل ذخیره آب و مواد آلی و کانی و همچنین تجمع مواد زاید سیتوپلاسم هستند.

میتوکندری

میتوکندریها ذرات ریزی هستند که به شکل کروی ، یا میله‌ای و یا رشته‌ای دیده می‌شوند و دارای دو غشا هستند: غشای بیرونی آنها صاف و غشای درونی به صورت چین خورده است. نقش میتوکندری ، تنفس است و ضمنا میتوکندری ، منبع انرژی می‌باشد. آنزیمهای تنفسی موجود در سطح غشای درونی آنها موجب شکستن مولکولهای گلوکز و اسیدهای آمینه و چربیها می‌شود و در نتیجه انرژی آزاد می‌گردد.

 

پلاستها

پلاستها را بر اساس رنگدانه‌هایی که ذخیره می‌کنند، به سه گروه کلروپلاست ، کروموپلاست و لوکوپلاست تقسیم می‌کنند. کلروپلاستها عموما قرصی شکل بوده و به علت دارا بودن کلروفیل ، سبز رنگ هستند. این اندامک غشایی دو لایه‌ای دارد. بخش درونی کلروپلاست شامل دو سیستم لایه‌ای و ماده دربرگیرنده این دو سیستم یعنی ماده زمینه‌ای یا دانه‌دار است. سیستم لایه‌ای دو بخش دارد: بخشی که گرانومها را تشکیل می‌دهد و بخش دیگری که آنها را بهم متصل می‌کند.

بخش درونی گرانوم به صورت کیسه‌های پهن شده‌ای مرتب شده‌اند و تیلاکوئید نام دارند و محل کلروفیلها هستند. نقش کلروپلاستها فتوسنتز است. لوکوپلاستها پلاستهای بی‌رنگی هستند که در یاخته‌های بشره و دیگر بافتهای بی‌رنگ وجود دارند. بعضی نشاسته ذخیره کرده و آمیلوپلاست نام دارند. گروه سوم پلاستها ، رنگدانه‌های زرد یا قرمزی داشته و کروموپلاست نامیده می‌شوند.

 

هسته

هسته از غشا و شیره هسته و دانه‌های کروماتین و یک یا دو هستک تشکیل شده است. DNA و RNA در هسته و میتوکندری و پلاست وجود دارند. هسته بزرگترین اندامک ساختار درونی یاخته‌های یوکاریوت است. اندازه نسبی هسته بر حسب سن و نوع یاخته فرق می‌کند.

 

تفاوت یاخته‌های گیاهی و جانوری

برای تمایز یاخته‌های گیاهی و جانوری می‌توان تفاوتهای زیر را بررسی کرد:

تفاوتهای متابولیسمی

تفاوتهای ساختاری

تفاوتهای تقسیمی

 

ساختمان DNA

DNA یا دزاکسی ریبونوکلئیک اسید یکی از ماکرومولکولهای سلولی است که حامل اطلاعات وراثتی بوده و طی همانند سازی ژنتیکی از یک نسل به نسل بعد منتقل می‌شود. و در داخل سلول از روی آن RNA و پروتئین ساخته می‌شود.

کشف ماده‌ای که بعدها DNA نام گرفت در سال 1869 بوسیله فردیک میشر انجام شد. این دانشمند هنگام مطالعه بر روی گویچه‌های سفید خون ، هسته سلولها را استخراج کرد و سپس بر روی آن محلول قلیایی ریخت. حاصل این آزمایش ، رسوب لزجی بود که بررسیهای شیمیایی آن نشان داد، ترکیبی از کربن ، هیدروژن ، اکسیژن ، نیتروژن و درصد بالایی از فسفر می‌باشد. میشر این ماده را نوکلئین نامید. زمانی که ماهیت اسیدی این ماده مشخص گردید، نام آن به اسید دزاکسی ریبونوکلئیک تغییر یافت.

 

ساختمان رشته‌ای DNA

سرعت پیشرفت تعیین ساختمان DNA بسیار کند بوده است. در سال 1930 کاسل و لوین دریافتند که نوکلئین در واقع اسید دزوکسی ریبونوکلئیک است. برسیهای شیمیایی آن مشخص کرد که زیر واحد تکرار شونده اصلی DNA ، نوکلئوتید می‌باشد که از سه قسمت تشکل شده است. یک قند پنتوز (2- دزوکسی D- ریبوز) ، یک گروه 5-فسفات و از یکی چهار باز آلی نیتروژن‌دار حلقوی آدنین (A) ، گوانین (G) ، سیتوزین (C) و تیمین (T) تشکیل شده است.

از این چهار باز دو باز آدنین و گوانین از بازهای پورینی و دو باز سیتوزین و تیمین از بازهای پیریمیدینی می‌باشند. به مجموعه قند و باز آلی نوکلئوزید گفته می‌شود. گروه فسفات می‌تواند به کربن3 و یا5 متصل شود. به مجموع نوکلئوزید و گروه فسفات متصل به آن نوکلئوتید می‌گویند. با توجه به اینکه یون فسفات می‌تواند هم به کربن 3 و هم به کربن5 متصل شود.

پس دو نوکلئوتید از طریق یک پیوند فسفودی استر بهم متصل می‌شوند. به این صورت که گروه هیدروکسیل یک نوکلئوتید با گروه فسفات نوکلئوتید دیگر واکنش داده و پیوند فسفودی استر را بوجود می‌آورد. از آنجایی که پیوند فسفودی استر ، کربنهای3 و5 دو قند مجاور را بهم متصل می‌کند، این پیوند را پیوند5-3 فسفودی استر نیز می‌نامند. یک زنجیره در اثر اتصال پشت سر هم تعدادی2-دزوکسی ریبونوکلئوتید بوسیله پیوندهای دزوکسی ریبونوکلئوتید تشکیل می‌شود.

تمامی نوکلئوتیدها در یک زنجیره پلی نوکلئوتیدی دارای جهت یکسان می‌باشند. به این صورت که نوکلئوتید انتهایی در یک سمت زنجیره دارای یک گروه5 آزاد و نوکلئوتید انتهایی در سمت دیگر زنجیره دارای یک گروه3 آزاد می‌باشد. بنابراین زنجیره پلی نوکلئوتیدی دارای جهت بوده و این جهت را به صورت5--->3 نشان می‌دهند. بنابراین اگر در نوکلئوتید ابتدایی کربن5 در بالای حلقه پنتوز و کربن3 در زیر آن باشد، در تمامی نوکلئوتیدهای بعدی زنجیره کربن 5 در بالای حلقه پنتوز جای خواهد داشت.

 

نتایج حاصل تا سال 1950

DNA یک پلیمر رشته‌ای متشکل از واحدهای2- دزوکسی اسید ریبونوکلئیک می‌باشد که بوسیله پیوندهای فسفودی استر5-3 به هم متصل شده‌اند.

DNA حاوی چهار زیر واحد dc و dG و dT و dA می‌باشد.

مقادیر متوالی dT و dA با یکدیگر و dc و dG نیز با یکدیگر مساوی می‌باشند.

 

مارپیچ دو رشته‌ای DNA

در سال 1953 در ساختمان سه بعدی DNA ، بوسیله واتسون و کریک کشف شد. واتسون و کریک با استفاده از مطالعات تفرق اشعه ایکس ، رشته‌های DNA که بوسیله فرانکلین و ویلکینز تهیه شده بود و همچنین ساختن مدلها و استنباطهای مشخصی ، مدل فضایی خود را ارائه دادند و در سال 1962 واتسون و کریک و ویلکینز به خاطر اهمیت کشف ساختمان DNA به صورت مشترک جایزه نوبل دریافت کردند.

مدل پیشنهادی آنان چنین بود. DNA یک مارپیچ دو رشته‌ای است که رشته‌های آن به دور یک محور مرکزی ، معمولا به صورت راست گرد پیچ می‌خورند. طبق مدل واتسون و کریک ، ستونهای قند - فسفات همانند نرده‌های پلکان به دو قسمت خارجی بازهای آلی پیچیده و به این ترتیب در معرض محیط آبکی داخل سلول هستند و بازهای آلی که خاصیت آبگریزی دارند، در داخل مارپیچ قرار می‌گیرند. هنگام تشکیل مارپیچ رشته‌ها به صورت موازی متقابل قرار می‌گیرند.

یعنی اگر جهت یک رشته3<--5 باشد، رشته دیگر 5<--3 خواهد بود. پیوندهای هیدروژنی بین آدنین از یک رشته با باز تیمین رشته مقابل و باز گوانین یک رشته با سیتوزین رشته مقابل بوجود می‌آیند. گر چه از نظر اندازه هر باز پورینی می‌تواند در مقابل یک باز پیریمیدین قرار بگیرد. ولی به دلیل وجود گروههای شیمیایی روی بازهای G و C و T و A پیوندهای هیدروژنی مناسب فقط بین C - G و T - A برقرار می‌شود و ایجاد پیوند بین T - G و C- A ممکن نیست.

 

 

واکنشهای توتومریزاسیون

اتم هیدروژن در بازهای آلی می‌تواند روی اتمهای نیتروژن و یا اکسیژن حلقه جابجا شود. این تغییر موقعیت هیدروژن روی حلقه باز را توتومریزاسیون می‌گویند. توتومریزاسیون در بازهای آدنین سیتوزین باعث تبدیل فرم آمینی به فرم ایمنی و در مورد بازهای تیمین و گوانین باعث تبدیل فرم کتونی به فرم انولی می‌شود.

در شرایط فیزیولوژیکی ثابت تعادل واکنش توتومریزاسیون بیشتر به سمت اشکال آمینی و کتونی می‌باشد. این حالت پایدار پروتونی ، الگوی تشکل پیوندهای هیدروژنی بین بازها را تعیین می‌نماید، بطوری که بازهای T و A با تشکیل دو پیوند هیدروژنی و بازهای G و C با سه پیوند هیدروژنی با هم جفت می‌شوند. C و A و همچنین T و G نمی‌توانند با هم جفت شوند.

زیرا در این بازها اتمهای هیدروژن هر دو در یک موقعیت قرار دارند و امکان ایجاد پیوند هیدروژنی وجود ندارد. به دلیل اینکه در رشته‌های DNA همواره باز A مقابل T و باز G مقابل C قرار دارد، این دو رشته را مکمل می‌نامند. بنابراین توالی موجود در یک رشته DNA ، توالی رشته مقابل را تعیین می‌کند. مکمل بودن دو رشته DNA ، اساس عمل همانند سازی DNA است.

 

ساختمان RNA

RNA مخفف اسید ریبونوکلئیک است که یکی از انواع اسیدهای نوکلئیک می‌باشد. در داخل سلول انواع مختلف RNA وجود دارد که هر کدام از آنها وظایف مخصوص به خود را دارند.

RNA صرف نظر از انواعی که دارای ساختمان خاصی است. برخلاف DNA که ساختمان مارپیچ دو رشته‌ای دارد RNA معمولا یک رشته‌ای و تقریبا صاف و بدون تاخوردگی و یا به صورت کلاف است. علت اصلی عدم تشکیل مارپیچ دو رشته‌ای RNA مزاحمت فضایی گروه OH متصل به کربن شماره 2- قند ریبوز است که مانع پیچش لازم می‌شود. زیرا گروه OH به طرف داخل محور مارپیچ قرار می‌گیرد و مانع فرم پایدار می‌گردد.

بنابراین حتی در مقابل DNA الگو که دقیقا مکمل RNA است، RNA نمی‌تواند به شکل مارپیچی به آن متصل شود. همین خاصیت RNA باعث عدم پایداری آن در محیط قلیایی می‌شود، بطوری که در محیط قلیایی ، RNA به مونونوکلئوتیدها تجزیه می‌شود، در حالی که DNA در محیط قلیایی فقط به صورت تک رشته‌ای درمی‌آید ولی تجزیه نمی‌شود.

 

 

انواع RNA

mRNA

mRNA یا RNA پیک به صورت تک رشته‌ای است. وظیفه اصلی پروتئین سازی را به عهده دارد و حاوی کدهای ژنتیکی برای ساخت پروتئین می‌باشد. پایداری آن کم است بطوری که گاهی پس از دو دقیقه بوسیله RNAase تجزیه می‌شود و به همین دلیل استخراج mRNA مشکل می‌باشد. گاهی هنوز ترجمه قسمت انتهایی mRNA تمام شده است که ابتدای mRNA تجزیه می‌شود. ولی در یوکاریوتها با مکانیسمهای خاص پایداری mRNA افزایش یافته است بطوری که گاهی پایداری mRNA در سلولهای یوکاریوت به 10 ساعت می‌رسد.

 

rRNA

rRNAها یا RNA های ریبوزومی اصلی‌ترین اجزای تشکیل دهنده ریبوزومها می‌باشند و نام ریبوزوم نیز از ریبونوکلوئیک اسید (RNA) گرفته شده است. RNAهای ریبوزومی نسبت به mRNAها پایدارترند. همچنین پروتئینهای ریبوزومی نیز به آنها متصل می‌شوند و باعث پایداری و عدم تجزیه rRNAها در مقابل RNase ها می‌شوند. rRNAهای پروکاریوتی شامل 16s ، 23s و 5.8s و rRNAهای یوکاریوتی شامل 18s ، 28s ، 5s و 5.8s می‌باشند.

 

tRNA

tRNAها یا RNA های ناقل مولکولهای RNA کوچک به طول 75 تا 85 نوکلوئید هستند که وظیفه آنها انتقال اسید آمینه‌ها به داخل جایگاه خاص ریبوزوم می‌باشد. در واقع عمل اصلی ترجمه در پروتئین سازی را tRNA به عهده دارد، زیرا از یک طرف یک کد سه تایی روی mRNA را تشخیص می‌دهد و از طرف دیگر نیز اسید آمینه خاص مربوط به این کد سه تایی را حمل می‌کند که به زنجیره پلی پپتیدی اضافه می‌شود. در داخل سلولهای مختلف ، تعداد متفاوتی از tRNA یافت می‌شود، ولی حداقل 20 خانواده از tRNA ها وجود دارد که هر خانواده یک اسید آمینه را حمل می‌کند. شکل کلی tRNA به صورت برگ شبدر می‌باشد. اتصال اسید آمینه به tRNA بوسیله آنزیم خاصی به نام آمینو اسیل - tRNA سنتتار انجام می‌شود.

 

hnRNA

این نوع RNA مخصوص سلولهای یوکاریوت می‌باشد که در آنها مواد ژنتیکی در داخل هسته قرار دارند در داخل هسته ، RNA در ابتدا به صورت رشته‌های حاوی نواحی کد کننده و غیر کد کننده ساخته می‌شود. به نواحی کدکننده اگزون و به نواحی غیر کد کننده ، انترون گفته می‌شود. این RNA برای تبدیل شدن به mRNA باید فرآیندهای خاصی را پشت سر بگذارد و قسمتهای انترون آن حذف شود به این RNA حاوی نواحی اضافی hnRNA گفته می‌شود که پس از اتمام فرآیند اصلاح تبدیل به mRNA می‌شود.

 

snRNA

snRNA قطعات کوچک RNA هستند که در داخل هسته وجود دارند و وظایف مختلفی را به آنها نسبت می‌دهند. گروهی معتقدند که این RNA ها همان پرایمرهای شروع همانند سازی RNA در سلول هستند و گروهی دیگر عمل دخالت در فرآیند اصلاح RNA را به آنها نسبت می‌دهند. گروهی نیز این قطعات را حاصل از اینترونها می‌دانند.

 

scRNA

scRNAها قطعات کوچک RNA موجود در سیتوپلاسم سلول می‌باشند که مانند scRNA عمل اصلی آنها هنوز مشخص نیست، ولی گروه

  انتشار : ۲۰ آبان ۱۳۹۵               تعداد بازدید : 315

دفتر فنی دانشجو

توجه: چنانچه هرگونه مشكلي در دانلود فايل هاي خريداري شده و يا هر سوال و راهنمایی نیاز داشتيد لطفا جهت ارتباط سریعتر ازطريق شماره تلفن و ايميل اعلام شده ارتباط برقرار نماييد.

فید خبر خوان    نقشه سایت    تماس با ما